
NASA Contractor Report 182290

Manifest: A Computer Program
for 2-D Flow Modeling in
Stirling Machines

r_l j4

David Gedeon

Gedeon Associates

Athens, Ohio

May 1989

Prepared for
Lewis Research Center

Under Contract NAS3-25195

NatioJ
Spac_

Date for general release May 1991

Contents

Summary 1

2

Practice 2

Introduction 3

1.1 Emerging From the Void 3

Sample Problems 7

2.1 Creep 7
2.2 Jets 10

2.2.1 Free Jets 12

2.2.2 Jets Impinging on a Porous Matrix 13

2.2.3 An Approximation for Jet Penetration Depth 17
2.2.4 A Condition for Uniform Flow 19

2.3 Side-Inlet Manifolds 20

2.3.1 Dynamic Pressure 20
2.3.2 Wall Friction 20

2.3.3 Inertial Pressure Gradient 21

2.3.4 Some Examples 21

2.4 Oscillating Flow in Channels 27
2.4.1 Velocity Profiles 28

2.4.2 Gas-to-Wall Heat Transfer 34

2.5 Epilogue 38

II User's Guide 40

3 Overview 42

3.1 System Requirements 43
3.2 Files 44

4 Tutorial

4.1 MFSETUP Tutorial

4.2

4.3

4.1.1 Starting
4.1.2 Main Menu

4.1.3 Graphics Editor

4.1.4 First Region

4.1.5 More Regions

4.1.6 Changing Shapes
4.1.7 Numerical Data

4.1.8 Scaling

4.1.9 Removing Regions
4.1.10 Return To Main Menu

4.1.11 Curvilinear Coordinate Generation

MF Tutorial

MFOUT Tutorial

4.3.1
4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

Scaling
Vector Plots

Contour Plots

Energy Flux Integrals

Energy Volume Integrals
Fourier Coefficients
When Finished

46

46

46

47
47

49
50

50

51

55

56

57

57

58

60
61

63

63

64

64

65
66

Reference Guide 68

5.1 MFSETUP Reference Guide 68

5.1.1 File Selection 68

5.1.2 Main Menu Commands 68

5.1.3 Graphics Editor Command Summary 69

5.1.4 Numerical Input Command Summary 72

5.1.5 Glossaries of Numerical Input Variables 73
5.1.6 More on Curvilinear Coordinates 79

5.1.7 Modeling Steady Flows 80

5.1.8 Special Effects 80
5.2 MF Reference Guide 81

5.2.1 Instability 81

5.2.2 Reynolds Number Limits 82

5.2.3 Running Out of Memory 82

5.2.4 Restarting 83

5.2.5 Convergence 83
5.3 MFOUT Reference Guide 83

5.3.1 Indexing Conventions 83

5.3.2 Output Listing 84

5.3.3 Interactive Options 85

5.3.4 Graphics Hard Copy 89

6 Mainframe Manifest

6.1 Running a Job
6.2 The Source Code

6.2.1
6.2.2

6.2.3

6.2.4

6.2.5
6.2.6

Units

Graphics :

Dynamic Arrays

String Handling

File I/O

Restarting

90

91

93

93

94

94

94

94

95

HI Theory 96

7 Coordinate Transformation Theory 97

7.1 Coordinate Systems 97

7.2 Function Representations and the Chain Rule 98

7.3 Important Properties of the Transformation Matrices 99
7.4 Basis Vectors 100

7.5 Vector Fields 101

7.5.1 Transformation Rules 102

7.5.2 The Velocity Field 102
7.6 Tensor Fields 102

7.6.1 Transformation Rules 103

7.7 Transforming the Divergence of a Vector Field 104

7.8 Transforming the Divergence of a Tensor Field 105

7.9 Transforming Terms of the Form _ 105
?.10 Integrals in Curvilinear Coordinates 107

7.10.1 Volume Integrals 107

7.10.2 Integrals of Flux Across Boundaries 107

The

8.1

8.2

8.3

8.4

Porous Flow Equations 109

The General Navier-Stokes equations 109
Porous-Flow Formulation 110

8.2.1 Averaged Quantities 110

8.2.2 Continuity Equation 113

8.2.3 Momentum Equation 114

8.2.4 Thermal Energy Equation 117

8.2.5 Solid Energy Equation 119
8.2.6 Closure 119

Rectangular Coordinate Representations 125
8.3.1 Effective Viscous Stress Tensor 125

8.3.2 Permeability Tensor 126

8.3.3 Two-Dimensional Equations in Rectangular Coordinates . 126
Dimensionless Form 127

iii

8.5 Porous Flow Equations in Curvilinear Coordinates 129
8.5.1

8.5.2

8.5.3

8.5.4

8.5.5

8.5.6

Staggered Grids 129
Computational Variables 131

Continuity Equation 132

Momentum Equation 132

Thermal Energy Equation 134

SoLid Energy Equation 134

9 The

9.1

9.2

9.3

9.4

9.5

9.6

Computational Algorithm 135
The Grid 135

The Gasdynamic Variables 135

Time Steppivg 136

Dependent Variables 139

Boundary Conditions 140
Initial Values 141

10 Grid Generation 143

10.1 The Governing Differential Equation 144
10.2 Boundary Conditions 144

10.3 Solution Algorithm 145

References 147'

Nomenclature 149

iv

Summary

This report is about a computer program named Manifest, after manifold and

estimate which more or less describe its intended purpose. That is, Manifest

is a program one might want to use to model the fluid dynamics in the mani-

folds commonly found between the heat exchangers and regenerators of stifling

machines. But not just in the manifolds -- in the regenerators as well. And
in all sorts of other places too, such as: in heaters or coolers, or perhaps even

in cylinder spaces. There are probably non-stirling uses for Manifest also. In

broad strokes, Manifest will:

• Model oscillating internal compressible laminar fluid flow in a wide range

of two-dimensional regions -- either filled with porous materials or empty.

• Present a graphics-based user-friendly interface, allowing easy selection

and modification of region shape and boundary condition specification.

• Run on a personal computer, or optionally (in the case of its number-

crunching module) on a supercomputer.

Allow interactive examination of the solution output so the user can view

vector plots of flow velocity, contour plots of pressure and temperature at

various locations and tabulate energy-related integrals of interest.

Part I

Practice

Chapter 1

Introduction

Manifest can be traced to a 1985 IECEC paper [6]in which I presented some

thoughts on possiblescenariosforflow non-uniformitiesin stirlingmachines as

wellassome preliminaryideason two-dimensionalmodeling. Shortly thereafter

I was ableto obtainfunding from NASA Lewis to pursue the matter inearnest.

The firstcontract,completed in 1986,showed that two-dimensional flow mod-

elingon a personal computer was feasible.In the second contract,Icompletely

rewrote (or wrote for the firsttime) most of the software,adding many new

featuresand generallypolishingitinto itspresentform. Somewhere during the

second contractthe name Manifest came to me on a bolt of lightning.

Copies of the software are generallyavailable. For furtherinformation,

NASA contractorsshould contact the StirlingTechnology Branch at NASA

Lewis. Others may contactme directlyat Gedeon Associates.

1.1 Emerging From the Void

Manifest, like most large software projects, started out as only an idea in the

primordial mist. Gradually the program took shape, but the path to the final

product was not always straight forward. In fact, the going was a bit steep at
times. This report would not be complete without at least mentioning some of

the more notable events, decisions and milestones encountered along the way.

The first decision was the choice of programming language. Long a fan of

the Microsoft Pascal language, I decided to stay with it for this project too.

Besidesthe usualfeaturesofstandard Pascalsuch as readability,strong typing,

powerful data structures,pointersand recursion;Microsoft Pascal supports a

number of language extensionsI have come to depend on, like:

• Separately compiled modules or units

• Dynamic array allocation

3

• Procedures,functionsand variable-length arrays passable as arguments

• Flexible string handling

• Linkabililty with special purpose libraries

In many ways, Microsoft Pascal is more like Modula-2 than standard Pascal. It

eliminates most of the usual objections to using Pascal for scientific computa-
tion.

Another early decision was: what to use for a numerical solution algorithm?

My requirements for an algorithm were that it be:

• Extendable to non-standard equations sets such as those describing flo_¢

through porous materials.

• Numerically stable and forgiving of large time steps. (In jargon, this means

an implicit algorithm rather than an e_plicit one.)

• Suitable for low Reynolds number and Mach number flows typical of Stir-

ling regenerators.

• Usable with boundary-fitted coordinate transformations.

After reading over the literature, I selected an algorithm designed by Beam and

Warming [2,3] as most likely to succeed. This proved to be a good choice as it

met all the above requirements and was relatively easy to customize as needs

arose. And customize I did. By the time I was finished, Manifest's algorithmic

heart had undergone surgery many times and survived one major transplant.
The end result bears only a superficial resemblance to the original Beam and

Warming algorithm. Full details are in chapter 9.
Another major decision was the choice of user interface. The problem was

how to enter graphical data -- things like the size and shape of the computa-

tional domain, etc. It was evident that the best way would have the user in-

teracting with a graphical representation of the problem on the display screen.

Anything else would have been unthinkable by today's standards. Consequently,

a lot of the programming effort of Manifest went into its graphical user inter-

face. Fortunately, I was able to find a library of low-level graphics procedures

(MetaWindow by Metagraphics Corp.) that spared me a lot of work with the
nuts and bolts of PC's and allowed me to focus on features specific to Manifest.

I am happy with the result. Examples of Manifest's user interface are found in

the User's Guide part of this report.
Manifest relies on boundary-fitted coordinates, and the theory behind them

turned out to be more difficult than at first I'd thought. This is the rubber-sheet

geometry that makes it possible to stretch irregular-shaped physical regions into

nice rectangular coordinated grids so that finite-difference solution methods can

be implemented. The problem is that the governing equations stretch along with
the physical domain. That is, they change in form -- in a non-trivial way. Worse

yet, I had a set of non-standard (porous flow) equations to begin with and could

find no good recipe books that would tell me how to proceed. I had to work

most of it out out on my own. But, I learned a lot and have recorded it for

posterity in chapter 7.
And about those porous flow equations. Although one can argue that the

usual Navier-Stokes equations are sufficient for modeling flow anywhere, the

pore size in stifling regenerators is very much smaller than the smallest compu-

tational grid feasible in Manifest. Therefore I had to add some empirical terms

to the gasdynamic equations to cover heat transfer and flow resistance in porous

materials. I did what I thought were the obvious things, and reported them in a
verbal presentation on Manifest at NASA Lewis. Sometimes, it's amazing what

riles people up. Anyway, the result of this encounter was that I felt obliged to

derive my porous flow equations from first principles. Now this really cannot

be done. Like turbulence modeling, it requires a great many leaps of faith along

the way. So while the resulting equations are pretty much the same as before,

at least now I can point to exactly what assumptions I made to get them. You

can see for yourself in chapter 8.

After Manifest was all written, it was time to test it. The idea here was

to port Manifcst's number crunching module to the NASA Lewis Cray X-MP

computer so that I could run some bi9 problems. Port is computerese for in-
stalling a computer program on a different computer. In the case of a program

written in a high-level language like Pascal, this should be mostly a matter of

re-compiling. So I thought -- but I was wrong. It took me a month to get

Manifest working right on the Cray. At first there were the problems of features

in Microsoft Pascal not available in Cray Pascal. Yes, that's right: Cray Pascal

is not quite up to microcomputer software standards. Only the hardware is fast.

That was not so bad, I had expected it. What I didn't expect was that Cray

Pascal would also have bugs. Specifically, problems with efficiently allocating

dynamic memory (memory allocated at run time) or reading more than one
Boolean-type variable per line in an input file. But, after I worked around all

the bugs, the Cray X-MP did turn out to be fast and turn-around time was not

too bad. Then along came Telenct and CMS-Kermit.

Telenet w_ my way to access the Cray from my PC via modem and telephone

link. CMS-Kermit was the program (running on the IBM front-end to the Cray)
that enabled me to transfer input and output files back and forth. My personal

visual image of this communications link involves signals bounced off Mars,

ricocheting off at least a dozen switching networks then finally arriving (in some

cases) in an ancient vacuum-tube based machine, stuck off in some forgotten
corner of the Lewis Research Center.

As you might have suspected, communications was not always reliable.

When I could get connected (and stay connected) and Kermit was feeling OK,
I was able to transfer files back and forth -- at thirty bytes per second. Now

computational fluid dynamics typically involves big files. Many of mine were

100 Kbytes or so. While my modem was squirting information over the tele-

phone lines at 2400 baud (300 bytes per second), somehow Kermit was slowing

things down by a factor of 10. But, we do not question these things. At any

rate, I suppose it's comforting to know that in these times, when we hear so

much about communications in millions of bits per second, there is still a place
where life is more relaxed.

So you see, developing Manifest was a bit frustrating at times. Major hurdles

-- one after another -- kept popping up. Even though I had some inklings in

the beginning that this would be the case, I was continually amazed at the depth

of things that could go wrong. But I learned a lot. I suppose that's why I went
ahead with it. Three years later: It was worth it.

Chapter 2

Sample Problems

The purpose of computing is insight, not numbers

-- R.W. Hamming

It is always fun -- and sometimes educational -- to look at pictures and

this chapter is full of them. All the computational plots here were produced by

Manifest. In many cases, the NASA Lewis Cray X-MP computer did the number

crunching using the mainframe version of Manifest's MF module (see chapter
6). Manifest's input and output modules MFSETUP and MFOUT, running on

an IBM-XT compatible PC, took care of problem setup and produced the actual

graphics images. These were printed on a laser printer from the display-screen

image using a separate screen-dump utility. In some cases, the PC performed

number crunching duties as well.

The problems here are mostly designed to illustrate the various ways that

stirling flows can be non-uniform and non-steady. Jets, manifolds and oscillating
flow are all covered.

Also illustrated are some of the fine points of how Manifest is used in practice.

Manifestors must always be on guard for too-large Reynolds numbers (leading
to flow instabilities), too-large or too-small computational time steps (causing

numerical instability or incomplete flow development) and computational grids
too coarse to resolve small-scale structures in the flow or that are too curved

(causing reduced accuracy). I have tried to point these things out as they arise

naturally in the context of modeling specific problems.

2.1 Creep

Creeping flow past a square block on a plate is a well documented phenomenon.

Figure 2.1 shows the situation for a Reynolds number of 0.02 in an experimental

photograph taken from reference [18]. At this Reynolds number, fluid inertial

forces are nil and the flow is dominated by viscosity. The key feature to note is

ORIGINAL PAGE IS

OF POOR QUALITY

\

Figure 2.1: Creeping plane flow past a square block on a plate. Reynolds number
is 0.02. Flow visualization by Glass beads in glycerin. From reference [18].

that the flow separates symmetrically ahead and behind the block, forming two

recirculating eddies.

Set up in Manifest, this problem is good for validation purposes because it
tests two important aspects of the program, namely:

1. That Manifest correctly evaluates the viscous stress tensor.

2. That Manifest correctly transforms the problem into curvilinear coordi-
nates.

The second assertion follows because of the way the computational grid is

stretched and bent. Figure 2.2 shows how I built up the computational do-

main by wrapping three mitered quadrilaterals around the sides of the block.

Figure 2.3 illustrates the actual computational grid. It is very curved. Since,

evaluating the viscous stress tensor in curvilinear coordinates is one of the most
complicated operations in Manifest, getting it right goes a long way toward

validating the program.

Figures 2.4 and 2.5 show the computational solution (obtained on a PC).
I used one-atmosphere helium as the working fluid, but closely approximated

incompressible conditions by keeping velocity low (_ 6 m/s). The computa-

tional Reynolds number is about 0.03 based on the dimensions of the block,
a very low value achieved by artificially increasing viscosity by a factor of 10 s

-- sticky helium. I set up linear velocity-profile boundary conditions along the

left (entrance) and right (exit) edges of the domain and impermeable no-slip

-i i_l _ i q---r-n ¸ I 1 i i i i i D I--T -=

\

_LJ__LLLLI I I I -

Figure 2.2: The solution domain for Creeping plane flow past a square block.

\ ./
\

\

Figure 2.3: The computational grid.

Figure 2.4: The computational solution for Creeping plane flow past a square
block.

boundary conditions for the remaining exterior edges. These conditions mimic
a very deep boundary layer for established flow along a plate, although there is
somewhat of an inconsistency because the upper-wall boundary is not present
in a free stream. I ran the problem in steady-flow mode for several time steps
until the solution steadied down to the results shown. Even though the compu-

tational mesh is a bit coarse, the detail-enlargement of figure 2.5 clearly shows
the required flow separation and recirculating eddy beyond the lee face of the
block.

2.2 Jets

Flow leaving stirling coolers or heaters is often traveling in the form of high
velocity jets when it enters the regenerator canister. The question is: to what
extent do these jets penetrate the regenerator matrix? If the answer is, a sig-
nificant amount, then we are likely to see the regenerator pumping loss and
thermal performance degrade over that predicted by models based on uniform

flow throughout.
The problems in this section address this issue in a visual way. Two di-

mensional laminar jets are shown impinging on regenerator samples of variable

permeability -- ranging all the way from no matrix at all to matrices dense
enough to stop the jet dead on. However, these preliminary results are not the
last word. One would do well to keep in mind the following restrictions.

• Simulated flows are two-dimensional plane flows, whereas in reality, most

stirling jets emanate from tubes or rectangular channels and are three-
dimensional.

10

st1

\

Figure 2.5: Flow detail beyond the lee face of the block.

11

Working Fluid
Pressure

Temperature

Jet velocity
Computational time step

Computational Courant Number

helium

15 mPa

650K

40 m/s
1.25E--5 s

c At/Az _, 100

Table 2.1: Values common to all jet simulations.

• Simulated flows are steady, not oscillating. I did this to save computa-

tional time, but, as a consequence, was unable to measure the thermal

performance of the regenerator over a complete cycle, even though it is,

theoretically, within the capability of Manifest.

• Reynolds numbers upstream of the matrix are restricted to values of about
100 by artificially increasing viscosity there. This has no effect on the pres-

sure gradient within the matrix, but tends to diffuse the jets upstream of
the matrix more than in reality. The reason for this restriction is that

Manifest cannot properly resolve higher Reynolds number jets in its com-

putation grid, nor can it model turbulence.

The geometry for all the problems in this section corresponds, more-or-less,

to the heater-regenerator interface of the Space Power Research Engine (SPRE)
on test at NASA Lewis. At the heater end of the SPRE, the regenerator canister

frontal area per tube is about 13 mm 2. The square root of this number gives

a rough estimate of the tube spacing -- about 4 ram. In the two-dimensional
equivalent problem, one can argue that an axis of symmetry occurs every 4 mm,
so I chose 4 mm to be the width of the computational domain and modeled

only a single jet. The length of the computational domain is 10 mm, which is
somewhat shorter than the actual regenerator length of 25 mm, but I wanted to

focus only on the region of interest. In the accompanying figures only about the

first 8 mm of the domain is pictured. To give the jet opportunity to develop,

I left a gap two computational cells wide between the jet inlet and the matrix
face in all cases. At the discretization I used, this gap amounts to 2.0 mm. The

actual hardware gap is 0.55 mm, somewhat less. The mass flow rate, velocity

and temperature of the jets is always the same and corresponds closely to the

peak influx condition of the actual SPRE. Some of the other properties common

to all jet simulations are in table 2.1.

To increase resolution, I ran all the jet simulations on the Cray.

2.2.1 Free Jets

I started out by modeling free jets with no matrix present. This sounds easy, but

one must be on guard for high Reynolds numbers in Manifest lest the solution

12

_- _:; "_" -'7 "_ _" _"

Figure 2.6: Free jet, VisMultiplier = 1000, Re = 10.

go unstable or, at least, fail to adequately resolve boundary layers. Based on

the inlet hydraulic diameter (twice the gap), the Reynolds number for jets in
the SPRE is about 104 -- highly turbulent and beyond the means of Manifest.

The obvious question was: Just how high a Reynolds number could Manifest

model accurately?
So it was that I embarked on a series of jet problems with increasing Reynolds

number. I held all input variables to SPRE values except for one: viscosity. By

arbitrarily setting Manifest's VisMultiplier input variable, I was able to adjust
viscosity -- and hence, Reynolds number -- to any value I wished. Figures

2.6 through 2.9 show jets with Reynolds numbers Re ranging from l0 to 350.

At Re = 10, a jet of sorts emerges. Note the flow circulations that are a

necessary consequence of boundary-layer separation at the inlet. But, viscous

forces quickly overwhelm the jet, resulting in rapid diffusion and re-attachment

of the boundary layer to the side walls. This would not do as a basis for

evaluating jet penetration into the matrix. At Re = 35 the jet is much more

pronounced, extending about 7 mm before wall re-attachment. Looking better.
At Re = 100 the jet is very pronounced but shows signs of instability. Hmmm...

Finally, at Re = 350 flow instability is pronounced and the jet is beginning to

tax Manifest's resolving abilities in the chosen computational grid.

2.2.2 Jets Impinging on a Porous Matrix

I decided to use the Re -- 100 jet as the basis for simulations with a porous

matrix present. This seems to be roughly the upper limit of Reynolds number
for which an accurate solution is available, and instability does not set in until

beyond the point at which the matrix was to begin. Figure 2.10 shows the Re =

100 jet, now impinging upon the baseline SPRE regenerator. This regenerator
consists of woven stainless steel screens with porosity 0.84 and a wire diameter of

13

Figure 2.9: Free jet, VisMultiplier = 30, Re = 350.

14

,_" _ _ _. : :i_: : :_: : _:i:i_i:i:_i:i:!_.._ii:i_!:i:_: : _ : :_.: :i:_i:i:!_,_-:

_,, _ .,/"j-.-.-.-.-.-.-.-p_i_i_:i_i_ _:_:i i_i i _ _i_ii_iiii_i_!_ii_!_!i_}_

i::_:i:::;:;:_i:i_:_:_;i:i-'.'_'_i;i:_'_;i i_i :i_'iii:_'_::i;i_i:_:i_'_':!: :_""
__:::.._._.ii:!_ ::::::::::::::::::::: _: :_: : :_: :!_:

_/ _ _,_,_:'_'J_.i:i_:!:i:'._-::i:i-_*.:!:i:_:!:i_i:::_:; :_: :i_i:i:.:_:":i:i:_i:i:i:q _'-
_. _ ,_. i_:: :::::::::::::::::::::::::::::::::::: :_,_: : _. : :_r_: :::_:::::_-_

-_- _ Jr == = = = == = === = === == = === = = =========================

Figure 2.10: A laminar jet (Re = 100) impinging on the baseline SPRE regen-

erator (shaded).

25 microns. Manifest knows it only as a porous material with hydraulic diameter

of 133 microns. (For screens, hydraulic diameter is given by d_ = d_o_/(1 - _),

where d_ is wire diameter and _ is porosity.) Note that somewhere between the

second and third millimeter into the matrix (the columns of arrows are spaced

0.5mm apart) the flow becomes essentially uniform. The reader can get the best

idea of the advancing velocity profile shape by tilting the page and looking at

the columns of arrows (tips) obliquely.

In figure 2.10, the fluid viscosity was only adjusted between the jet inlet and
the matrix face, not in the matrix itself. So to the extent that the pre-matrix

dispersion and dynamic pressure head of the jet remain intact (and I think they

do), the matrix velocity field of figure 2.10 is representative of the actual flow

field of the SPRE regenerator.
To get a better idea of the transitional region between the point of jet im-

pingement and the development of uniform flow, I next simulated two cases

using more permeable matrices. Figure 2.11 and 2.12 have, respectively, 1/4

and 1/16 the friction factors of the baseline SPRE regenerator. At 1/4 friction

factor the flow does not become completely uniform until about 5 or 6 mm pen-

etration, and at 1/16 friction factor the flow is noticeably non-uniform over the

entire picture. At this permeability the effects of the uniform-flow exit bound-

ary condition are no longer negligible. Note that in both cases, but especially in
figure 2.12, the flow circulations on either side of the jet persist into the matrix.

This means that flow is actually the wrong way at some points of the transi-

tion layer denying the regenerator the opportunity to re-charge thermally. As
a consequence, one expects that the regenerator temperature profile will be no-

ticeably non-uniform in the transition layer and, perhaps, for a good bit further
on as well.

One might wonder if the apparent velocity boundary layers near the side

15

/,,,
/,-

I/

4
I',

X',.-
"t",

Figure 2.11: A laminar jet (Re = 100) impinging on a regenerator with 1/4 the
SPRE friction factor.

L

1',

.'t,

_, _ _..-: : : :_ : i : i';_ i : i : i"_ i : i : i"_: i : i : _il : i: _ :! : i :-_! : !: !_'i : ! : _.!: i: i:;_i : i : i_,: i : i :_-
,_ ===

_,. _ ==/,, _ ..i:i:_4i:i:i_i:i::_:i:i:_:i:i_i:i:_:i:i:,_,i:i:i¢,i-iiil _ilil-i_ i i_ i !_

__ _: _ i :_i : !..._-_: i :-F_;_•! : i._l_.i: ! :._+: i :i _,_.!: :_.

Figure 2.12: A laminar jet (R_ = 100) impinging on a regenerator with 1/16
the SPRE friction factor.

16

walls of the matrices in figures 2.11 and 2.12 are due to viscous interactions at

the solid wall or just to the fact that the jet has not yet spread out sufficiently.

Evidence points to the latter reason. I was able to check this out because

Manifest has two ways to model the momentum equation in porous materials.

The first way includes a variant of the usual viscous stress tensor along with

an empirical term based on the well known Ergun equation for flow through

porous materials. This is explained in full detail in chapter 8. The second way

turns off the stress-tensor term under the justification that it is overwhelmed

by the Ergun term in almost all cases. This way, the simulation runs faster. I

simulated the 1/16 friction factor case both with and without the stress-tensor

present and was unable to notice any difference between the two. From this I
conclude that for all matrices simulated, the stress-tensor is indeed negligible

and the no-slip wall boundary condition has no effect on the flow -- even as

close as one grid point away.

2.2.3 An Approximation for Jet Penetration Depth

Jet penetration depth can be understood in dimensionless form in terms of the

dynamic pressure head at the jet inlet and the pressure gradient in the matrix.

The idea is that by the time a jet encounters about one dynamic-head worth of
frictional pressure drop, it will more-or-less run out of steam.

An approximation of the steady-flow matrix momentum equation at the jet
center line is

0__ (pv2 + p) = F (2.1)
0z

where v is the center-line axial velocity, P is pressure and F represents the

drag force per unit volume arising from viscous stress between the gas and the

matrix. F can be expressed as -(f/dh)(pvZ/2), where f is the matrix friction

factor and dh is the matrix hydraulic diameter. The left side of (2.1) can be

expanded to v°(pv) + pv_ + _. From the steady-flow continuity equation

o (pv) -=--_ (pu), where u is the radial velocity component. If we are willing to

neglect -_(pu) then it follows that b_(pv)is negligible. Furthermore, I make the

assumption that OR o¢ F. This assumption is more convenient than rigorous
but it simplifies things. It is borne out somewhat by inspection of pressure

contour plots for figures 2.10 through 2.12 (not shown). The approximate jet

penetration equation then reduces to

0_ _ - v (2.2)

Now, (2.2) is not quite as simple as it looks since f is itself a function of

velocity. But it doesn't matter. I am only using it to lend credibility to the

following guess at the solution form:

v(x)- _ (2.3)
?J0 N _1oo

17

Here, v(x) is the axial velocity at a depth z measured from the face of the

matrix, v0 is the jet inlet velocity, v_o is the deep matrix velocity, f0 is the

friction factor just inside the matrix at velocity v0 and K is some constant to

be determined by computational experiment. One nice feature of the above
functional form is that it allows an un-ambiguous definition of a characteristic

penetration depth D as the depth for which

v(D) - v_ = e_ 1 (2.4)
_0 -- Voo

In other words, velocity peters out by a factor 1/e _ 0.37 for successive layers
D thick. In terms of D, the axial velocity function reduces to

- ,,oo_ (2.5)
VO -- _oo

By careful examination of figures 2.10 through 2.12, one can evaluate the con-

start K in equation (2.3). I have done this but, unfortunately, the results don't

seem to fit equation (2.5) as closely as I had hoped. For the low-permeability

baseline matrix, K = 0.2 is a good fit. For the high-permeability matrix K = 0.7

seems better. The intermediate-permeability matrix is somewhere in between.

Nonetheless, until something better comes along, the conservative thing to do
would be to use

/_ _ 0.2 (2.6)

in which case the penetration depth works out to

5 d_ (2.7)
D_ _0

We can take this even further. For most fibrous porous materials, the friction

factor is represented in the well-known Ergun form [11] as

! = (el�R, + c2) -°6 (2.8)

where/3 is porosity and for fibrous materials ct is about 150 and c2 is about 1.5.

Using this approximation, the penetration depth for fibrous materials becomes

" /3°'Sdh (2.9)
D _ _ 150/Re + 1.5

In applying this formula, one must evaluate Reynolds number in the matrix just

beyond the point of jet impingement -- that is, as

Re- pvodn (2.10)

In the SPRE case, for example, Re _ 1.7x 103 so that the first term in the Ergun

friction factor is fairly small. Assuming that this will also be the case for most

18

jets of practicalinterest,onecanneglectthe first term in the Ergun friction
factor and wind up with a particularly simple expression for the characteristic

penetration depth
D 3 °6ah (2.11)

Or, since dh = d,oj3/(1- fl) for fibrous materials, the characteristic penetration

depth in terms of fiber diameter dw is

3_1.6
S _ 1--_d_ (2.12)

2.2.4 A Condition for Uniform Flow

The characteristic depth D is a handy measure of jet penetration, but it is only

part of the picture. Usually one is interested in the depth x required for flow to
achieve some prescribed level of uniformity, namely:

l/(x) - l/oo< e (2.13)
l/co

where e issome prescribetolerance.Now, the leftside of (2.13)can be un-

factoredinto

v0 -- l/oo } l/oo]

and the second factor can be approximated

l/O -- I/co
,_ _ - 1 (2.14)

1)oo

where o" is the ratio of matrix free-flow area to total tube flow area. Replacing

the first factor with equation (2.5) gives the flow-uniformity criterion as

e-(=/D)(a- 1) _< _ (2.15)

which after a little algebra becomes

Inequality (2.16) is a potentially useful result that engineers can keep in

mind when designing regenerators. In the SPRE baseline case, the free-flow
area ratio a is about 8.9. The depth required for flow to achieve uniformity

to within 10% (e = 0.10) is, according to (2.16) x > 4.4D. In terms of the D

approximation given in equation (2.12) this amounts to x > 62d_ = 1.6ram at

the SPRE porosity of 0.84 and wire diameter of 25 microns.
One cautionary remark: Jet penetration depth is really just a measure of

the distance over which the dynamic pressure head in the jet has an appreciable

19

affect on the regenerator velocity field. Even with a small D, one must take

care to provide proper distribution manifolds at the regenerator faces to insure

uniform flow. Without such manifolds, the regenerator velocity field will just

fan out from the sources -- more, or less, depending on the source spacing --

even in the limiting case of pure Darcy (viscous dominated) flow.

2.3 Side-Inlet Manifolds

Another fundamental problem in regenerator theory is branching flow from dis-

tribution manifolds into (or out of) the faces of the regenerator matrix. To

separate this phenomenon from the previously considered jet phenomenon, I

am focusing on what I call side-inlet manifolds. In these, the flow at the mani-

fold inlets is parallel to the regenerator faces, so no jets impinge upon the matrix.
Roughly speaking, most regenerator manifold problems can be decomposed into

the sum of a jet impingement followed by a side-inlet problem. That is, after the

matrix has turned the jet aside, the flow must then branch-off into the matrix.

There are three distinct factors that cause static pressure variations in mani-
folds and thus prevent uniform flow distribution into the regenerator faces. They

are: dynamic pressure changes, wall-friction effects and inertial pressure gradi-

ents. Each of these factors can be made arbitrarily small by increasing manifold

size, but this is not art option in stirling design where minimal void volume is

important. A good stirling manifold achieves uniform flow distribution with the
manifold volume as small as possible.

2.3.1 Dynamic Pressure

According to Bernoulli's law, a change in dynamic pressure head occurs as

flow progresses up or down the manifolds and changes velocity. Static pressure

increases as velocity decreases. The velocity change depends on the rate at

which flow branches off (or in) and the degree of manifold taper. The change
in dynamic pressure along the manifold is roughly given by

= (2.17)

where p is the gas density and v is manifold velocity. Typically, in a supply

manifold, static pressure increases in the direction of flow due to decreasing

manifold velocity as flow branches off. In a discharge manifold, the reverse

happens and static pressure tends to decrease in the flow direction. Clearly, the

problem is worst at times of peak velocity.

2.3.2 Wall Friction

Just as for flow in any channel, flow in manifolds must pay the price of vis-

cous shear stress at the walls. In a supply manifold, frictional pressure drop

20

tends to counteract the dynamic pressure change. In a discharge manifold, the

reverse happens and frictional and dynamic pressure changes add. Since mani-

folds switch between supply and discharge roles every cycle, designing balanced

stirling manifolds is especially tricky. Frictional pressure gradient -_ can be
estimated by the same means as for ordinary channel flow

f (2.18)
Ox- dh 2

where f is a Darcy friction factor taken from some standard mechanical engi-

neering reference. However, one should be careful not to expect great accuracy
here. First of all, velocity v is changing along the manifold and flow is not fully

developed. Second, velocity profiles are apt to be significantly different from

textbook channel flow because branching flow at the manifold/matrix interface

is nothing like the boundary condition at an impermeable no-slip wall.

2.3.3 Inertial Pressure Gradient

As a result of Newton's second law, gas inertia can induce a pressure gradient

along a manifold whenever the density and time rate-of-change of gas velocity

are significant. One can approximate inertial pressure gradient _ from

_qPi 0%
O---x"= -P_- (2.19)

Note that, unlike the previous two, this effect is largest at the times of flow

reversal when net velocity is zero.

2.3.4 Some Examples

By properly balancing the manifold shape, inlet velocity, matrix pressure drop,

and so forth; one can wind up with reasonably uniform flow in the regenerator.
But, obviously, there are many variables to play with. Too many, in fact, for

there to be much hope of obtaining a closed-form general theory of manifold

design. But that is why we have Manifest. By careful computational study, one

can, in principle, optimize the manifold design for any given machine.

To illustrate just how one might proceed, I've chosen to model a problem that
illustrates all the major manifold phenomena. I started out with a regenerator

geometry that is similar to several actual regenerators I've met in the past,

but identical to none of them. The basic geometry consists of a square-section

regenerator with tapered side-inlet manifolds at either face. Table 2.2 gives the

essential dimensions. I felt that tapered manifolds with inlet height equal to

1/10 the total length, and with height tapering linearly to 1/4 the inlet value,

were about right. I chose the oscillating-flow frequency low enough to avoid

any organ-pipe resonances but high enough to keep the computational Courant

number in the stable range. (More on Courant-number stability later.) The

21

WorkingFluid
Pressure

Temperature

Oscillating flow frequency

Regenerator length

Regenerator width

Matrix hydraulic diameter

Matrix porosity

Manifold height at inlet

Manifold height at end

Peak inlet velocity

Computational time step

Computational Courant Number

helium

10 mPa

300K

100 Hz

40 mm

40 mm
39 microns

0.90

4 mm

1 mm

25 m/s
6.25E-4 s

cAt/Ax _ 300

Table 2.2: Input data for a representative side-inlet manifold problem.

inlet mass-flux amplitude gives a matrix-flow tidal amplitude of about 1/10 the

matrix length. To keep the manifold Reynolds numbers in the laminar range,

I set the manifold viscosity multiplier to 160, which brought the peak manifold

Reynolds number (evaluated at the inlet) to about 1000. Later on I increased
the multiplier to illustrate the effects of increased frictional pressure gradient.

Because of the potential significance of inertial pressure gradients, all the

simulations in this section used the oscillating-flow mode of Manifest. Flow is

sinusoidal at the inlets and exactly in phase (or out of phase, depending on how

you look at it), so that the total gas mass within the system remains constant.

Running the simulations for a bit more than one cycle seemed to be enough to

establish flow equilibrium.
All simulations were isothermal with zero heat transfer between the matrix

and the gas. I wanted to avoid the complications of thermal effects and the ne-

cessity to consume huge amounts of computer time waiting to establish thermal

equilibrium. However, given enough time, it would be possible for manifest to

directly evaluate regenerator thermal performance (net enthalpy flux across the

regenerator faces). In this event, to speed-along thermal equilibrium, it would
probably be a good idea to artificially reduce the matrix solid thermal capacity

to only a few times higher than that of the gas.

By using a relatively coarse computational mesh, I was able to run all the

problems shown in this section on a PC. The solutions lack the resolution of

their Cray counterparts, but are sufficiently accurate to portray the principle

phenomena of interest.

The _rst illustration, figure 2.13, shows the velocity field in the above prob-

lem at the point of peak flow velocity. Flow distribution is worst at this time.
Note that the velocity profiles in the two manifolds are quite different. Tapering

of the supply manifold causes velocity to remain high throughout even though

22

Figure 2.13: Velocity field at the instant of peak flow. Inlet Reynolds number
about 1000.

flow is branching off. Also, in the supply manifold the velocity remains high

near the matrix interface while in the discharge manifold it is low there. The

latter effect is due to the low-velocity fluid constantly entering the fluid stream

from the matrix. Consequently, the outer-wall velocity gradient, and hence wall

shear stress, is higher in the discharge manifold than in the supply manifold.

The matrix interior velocity field is fairly uniform but difficult to see at the

magnification factor shown. A better idea of the matrix flow can be had by

looking at the pressure contour lines shown in figure 2.14. Since matrix flow is
approximately proportional to the local pressure gradient, it is easy to visualize

the flow field. Uniform flow implies columns of vertical pressure contours -- not

quite the case in this figure. For the various reasons cited above, the pressure

change along the supply manifold is about 5% of the total matrix pressure drop

and the pressure change along the discharge manifold about 10%. The dynamic

pressure head accounts for about 1.6 contour lines in the manifolds, the rest is
due to fluid friction. Apparently, in this example, the dynamic pressure head

overwhelms friction in the supply manifold -- pressure is highest at the top.

However, In the discharge manifold, frictional pressure drop is significant.

Figure 2.15 show the situation one quarter period later at the instant of flow

reversal. All velocities are small compared to the peak-flow case but there is

an unmistakable pattern in the matrix interior which is driven by the inertial

component of manifold pressure drop. The reason for this can be seen most

23

Figure2.14:PressureContours at the instant of peak flow. Contour interval =
3.16 E3 N/m 2.

clearly in figure 2.16 which shows the pressure contours at the instant of flow

reversal. The pressure gradients have opposite sign in the two manifolds and

the mid-point pressures are about the same. The contour interval is the same
as before.

The situation at the instant of peak velocity in the opposite direction is

not shown. Because of the problem's symmetry, it is exactly like the previous

peak-velocity illustration except reversed. It follows that in either direction, the

net pressure drop across the matrix is somewhat greater near the bottom than

the top (due mainly to the discharge manifold pressure gradient), resulting in

increased flow there. In the present example, the effect is not too pronounced

and the regenerator flow is probably good enough for most stifling purposes.
The final two illustration, figures 2.17 and 2.18 show what happens when

frictional pressure drop becomes the overwhelming factor in both manifolds. I

arbitrarily increased the manifold viscosity multiplier by a factor of 10. Note

that the pressure gradient in the supply manifold is now reversed. This time,

frictional pressure drop overwhelms the dynamic head. Also, the velocity pro-

file in the discharge manifold now shows a much thicker boundary layer. The

pressure gradient in the discharge manifold is the same sign as before but the

the total pressure drop is higher.

The matter of arbitrarily setting manifold viscosity multipliers deserves some

discussion. In modeling a real manifold for which flow is always laminar, one

24

:::::::::::::::::::::::::::::: : : : : _!:i:i

._,:i i _:. _::i;_i:i:ii_>ii! i_i_ii::iiii_!i!iiiii::ii:: iiiii:_.

_ _:::: ::} :::
:::

h_'< i:i:i;?:::i :!i:i:??iii:5:i:2:i:::i:!:i:: :::::::::::::::::::::::::::::::::::

^^^:i_ _i_! _iiiiil i i:.!::i::_ii_::

Figure 2.15: Velocity field at the instant of fiow reversal.

 iiii!iiiiiiiiiiiiiiiiiiiiiiiiiii

Figure 2.16: Pressure Contours at the instant of flow reversal. Contour interval

= 3.16 E3 N/m 2.

25

i_,i_i_i_i!_ii_i!ii_iiiii_i_:i! iii ii _i!!!ii!_ii_li_i_ii_.ii_ii_i_i!_

_iiiiii_iiiiiii_iiiii_i_iiiiiiiiiiii!iii!iiiiiii!iiiiiiiiiiiiiii!ii_i!ili_

ii!!iiiiiiiii!i!!i!i!iiiiii!i!iiiiiiiiiiiii!i!!ii!iii!ii iili i ii i i i

iiiii_iiiii_ii!i_iiiii_i!i!_iiiii_i!iii_iiiii_iiiii_iiiiii

Figure 2.17: Velocity field at the instant of peak flow. Increased viscocity case.

Inlet Reynolds number about 100.

i:ii'i i

i _i ! ii !iiiiiii

Figure 2.18: Pressure Contours at the instant of peak flow. Increased viscosity
case Contour interval = 3.16 E3 N/m _.

26

would certainly not do this. But in a turbulent case, a viscosity multiplier can

serve as a crude turbulence model, approximating eddy viscosity in a solution de-

void of the small-scale fluctuations of true turbulence. One way to estimate the

viscosity multiplier is to look at a standard Moody-type friction factor diagram.

By extending the laminar-flow branch slightly one can determine a Reynolds

number -- say R_ -- for which the laminar friction factor equals the actual

turbulent friction factor. Usually R_ is between 2000 and 3000. By introducing

a viscosity multiplier so that the computational manifold Reynolds number will

be R;, the resulting non-turbulent solution in Manifest should have, roughly,
the correct frictional characteristics. If the manifold is only a few computational

cells thick then Manifest can model flows with Reynolds numbers in the range

2000 to 3000 without going unstable.

2.4 Oscillating Flow in Channels

Two more poorly understood areas ofstirling machines are the heat transfer and

pressure drop characteristics in the heat exchangers. The prevailing conditions

there are oscillating flow which, depending on the dimensionless frequency, may

or may not have much in common with steady flow. For better or for worse, en-

gineers have traditionally applied steady-flow correlations for heat transfer and

pressure drop to stirling machine design. And the machines have usually turned

out Ml-right. On some occasions, though, oscillating-flow really is important,
and steady-flow assumptions just don't work.

UNtil recently, the only information about oscillating flow has come from an-
alytical studies of simple geometries. Closed-form solutions exist for incompress-

ible, laminar, sinusoidally oscillating flow in tubes or between parallel plates.

These solutions give velocity profiles under various flow conditions which, in

turn, can be used to solve for wall shear stress (frictional pressure gradient).
Heat transfer is more difficult. The only analytic solutions I know of assume

linear axial temperature gradients for both the fluid and the wall.

However, in typical stirling heat exchangers, the flow conditions are far from

ideal. Pressures are fluctuating and the flow is predominantly turbulent. The

entry region, over which the velocity profile develops into its theoretical inte-

rior value, may be a significant part of the total heat exchanger length. Only
in regenerators is the axial temperature profile nearly linear. In heaters and

coolers the wall temperatures are roughly constant while the gas temperatures

vary in a complex way along the axis. Recently, some experimental research

programs have made progress in understanding realistic oscillating flows. How-

ever, the number of variables and boundary conditions may prove overwhelming

for any hope of finding a concise easy-to-apply set of engineering correlations

-- especially for heat transfer.

Enter Manifest. By modeling actual stifling heat exchangers in 2-D and
on a case-by-case basis, one can come to terms with entrance effects, nonlinear

27

temperatureprofiles and weird boundary conditions. Of course, with Manifest
there are still questions about the effects of turbulence and 3-D flows, but the

addition of a turbulence model, along with a bit of confirmation from the wind

tunnel, might enable Manifest to sort this out eventually. Anyway, even in its
present form, Manifest can model some heat exchanger problems that border

on realistic. What follows are some qualification problems, mostly comparing

Manifest to what is already known (or might be guessed) but, perhaps, pointing

out some things that are not. They were all run on the Cray.

Before getting started, here is a list of the dimensionless groups that char-

acterize oscillating flow -- at least for ideal laminar flow. These are the Valensi

number (sometimes known as kinetic Reynolds number)

vo _ (2.2O)
4p

the peak Reynolds number

and the tidal amplitude ratio

Re- pvdh (2.21)
P

_ " (2.22)
L wL

Here, p is gas density, w is angular frequency, p is viscosity, v is the peak velocity

(amplitude of first harmonic), dh is hydraulic diameter,/_ is the tidal amplitude

(back and forth motion of a tracer particle) and L is the heat exchanger length.
The Valensi number is a dimensionless measure of oscillation frequency. Flow

with Va below about 10 is essentially steady flow. For Va above about 100

velocity profiles get weird because inertia in the core flow causes it to lag the

changing pressure gradient more than the low-velocity flow near the wall. All
this is complicated by (and complicates the creation of) turbulence.

2.4.1 Velocity Profiles

The obvious first step is to confirm that Manifest agrees with the exact analytic-

solution velocity profiles for sinusoidal oscillating flow between parallel plates.

To come close to incompressible conditions I modeled helium at 25 bar pressure

and low flow velocities (Mach number less than 0.01 in all cases). I used a
computational domain comprising parallel plates with 20 mm spacing and 240

mm length. To get Valensi number and peak Reynolds number into the range

of interest, I had to introduce a viscosity multiplier of about 1000 on the he-

lium. Spatially-uniform timewise-sinusoidal velocity boundary conditions were

in effect at both ends of the computational domain.

Peak Velocity Profiles

The first set of plots, figures 2.19 through 2.22, show Manifest velocity profiles in

the central region of the domain at the instant of peak section-average velocity.

28

Figure2.19:Manifestpeakvelocityprofiles.Va = 10, Re = 10, 6/L = 4.2E-2.

2m 2a 2m ?_

_, _- It- lla

Figure 2.20: Manifest peak velocity profiles. V_ = 40, Re = 10, 6/L = 1.0E-2.

In all cases peak Reynolds number is only 10 and, consequently, the velocity

profiles are fully developed. The plots show Valensi number increasing by factors

of four from V_ = 10 to Va = 640. Note that the flow progresses from the
familiar parabolic profile of laminar flow to a slug profile characteristic of inertial
dominance in the core flow.

Flow-Reversal Velocity Profiles

Even more interesting are the velocity profiles at the instant of flow reversal --

in the sense of the section-mean average. At these times the differences between

the core flow and the boundary layer are most apparent. Figure 2.23 shows

the exact analytic velocity profiles for several Valensi numbers at the instant of

flow reversal. These are for incompressible parallel flow in an infinite domain
so the peak Reynolds number and tidal amplitude are irrelevant. The profiles

are normalized by U0 the center-line velocity amplitude.

29

_,. 5"- _ _-

Figure 2.21: Manifest peak velocity profiles. Va = 160, Re -_ 10, 6/L = 2.6E-3.

2"- _- 21"

5-- _ --_ _b

Figure 2.22: Manifest peak velocity profiles. Va = 640, Re = 10, 6/L = 6.6E-4.

3O

iiiI
0.10-

O. 00-

--0.10-

0 20

• 3O

0 4O

axi DI ensi nless transverse ooordinate (eta)
_ m o

seatton _vo_evelo©ity p_ottle CU/UO) _t

Figure 2.23: Theoretical velocity profiles at the instant of section-average flow
reversal. For Va = 10, 40, 160, 640 and 2056. The inertial core gets bigger and

the boundary layer thinner with increasing Va.

Figures 2.24 through 2.27 show the Manifest mid-domain solutions at the

instant of section-average flow reversal. For better visibility, the velocities in
these plots are scaled up by a factor of 7.5 over those in the previous peak-

velocity plots. Therefore, any errors are also magnified. For all except the last
case, small circles are superimposed on the middle column of arrows to indicate

where the tip of the arrow would be for the exact solution. The Va - 640 case

is way off. I think Manifest is nearing an acoustic resonance on this one. The
dimensional frequency is 1273 Hz while the organ-pipe half-wave frequency for

the 240 mm domain length is 2080 Hz. Disregarding the last case, agreement
between the exact solution and Manifest is not too bad. Even the last solution

is not wrong, it is just that the incompressible-flow analytic solution knows

nothing of acoustical resonance. Actually, it is good that Manifest is capable of

spotting this sort of thing.

Velocity Profile Development

Not considered at all by most analytic solutions is the matter of entry length.

For steady laminar tube flow, Kays and London ([10] Fig. 6-23, p. 138) present

31

Figure 2.24: Manifest flow-reversal velocity profiles. Small circles indicate exact

solution. Va = 10, Re = 10, 6/L = 4.2E-2.

Figure 2.25: Manifest flow-reversal velocity profiles. Small circles indicate exact

solution. Va = 40, Re = 10, 6/L = 1.0E-2.

Figure 2.26: Manifest flow-reversal velocity profiles. Small circles indicate exact

solution. Va = 160, Re = 10 6/L = 2.6E-2.

32

_C _ qt_

Figure 2.27: Manifest flow-reversal velocity profiles perturbed by acoustic reso-

nance. Va = 640, Re = 10 6/L = 6.6E-4.

data suggesting that flow requires an entry length xe of about

xe Re
-- -- (2.23)
dh 100

before the wall shear stress (friction factor) is within 25% of its fully developed
value. Certainly we expect this result to hold in oscillating flow for low Valensi

numbers. But, it is not so clear what we should expect for high Valensi num-

bers. Intuitively, the dimensionless groups that characterize the entry length

are Valensi number, and Peak Reynolds number. The ratio of tidal amplitude

to hydraulic diameter _/d h is, clearly, also relevant, but it is just proportional

to the quotient of Re and Va.

The obvious way to get some insight is to conduct a series of computational

experiments where Re and Va vary independently over suitable ranges. Figure

2.28 shows peak velocity profiles over, roughly, the first half of the computational
domain where peak Reynolds number is 250 in all cases but Valensi number

ranges from 10 to 160. It is difficult to say exactly, but it appears that, for all

plots, flow is pretty much developed by about the fifth column of arrows (about

twice the plate spacing or one hydraulic diameter). The important observation

is that, to the resolution of the grid, entry length seems independent of Valensi
number. The jury is still out on whether this conclusion will withstand closer

scrutiny.

Figure 2.29 shows developing velocity profiles for peak Reynolds number
ranging from 10 to 1000 with a Valensi number of 10 in all cases. The plot at Re

= 1000 shows a curious instability in the flow: a small oscillation superimposed
on the main flow. I am not sure how much of this is real and how much is

computational artifact. At any rate, at Re = 1000, flow seems to be developing

for most of the computational domain. A good guess for the entry length xe
in this case would be about 5 hydraulic diameters. Assuming entry length is

33

Figure2.28: Developing peak velocity profiles. Re = 250, Va = 10, 40 and 160.

linear with peak Reynolds number, it looks as if a reasonable approximation to

the entry length is
Ze _e

-- -- (2.24)
dh 200

Not too much different from the Kays and London data for steady tube flow. At

least part of the difference may lie with the fact that Manifest is simulating flow
between parallel plates -- not tube flow. But the major reason is, no doubt, due

to my subjective interpretation of what constitutes a developed velocity profile.

2.4.2 Gas-to-Wall Heat Transfer

This last series of problems grew out of a desire to model gas-to-wall heat

transfer in a situation similar to one that might be found in an actual stifling

engine. According to Seume and Simon [14], a significant number of stirling

heat exchangers operate with tidal amplitude ratios 5/L on the order of 1, peak

Reynolds numbers on the order of 10,000 and Valensi numbers on the order of
100. Tidal amplitude and Valensi number were no problem for Manifest. But

I had to limit peak Reynolds number to about 1000 to avoid flow instabilities.

Also, I thought that realistic L/dh values (typically about 100 in stirling heat

exchangers) would make for a long skinny computationM domain in which it
would be difficultto see what was going on. So, I opted fora relativelyshort

and fat Lids,.

Isetup Manifest tomodel a heat exchanger with a 300K wallsubjecttosinu-

soidallyoscillatingflow enteringeach end at 290K. The computational domain

comprised parallelplatesof length 10.0 mm spaced 1.0 mm apart. I divided

the domain into three parts:an 8.0 mm long centralregionwith two 1.0 mm

regionson eitherside. I set up an isothermal300K wall boundary condition

34

Figure 2.29: Developing peak velocity profiles. Re = 10, 100, 1000, Vo = 10.

The R, = 1000 case is folded to show the entire computational region.

in the central region. Both outer regions had linear wall temperature profiles

smoothly connecting the 290K inlets to the 300K central region. This was nec-

essary because of the way Manifest determines its inflow temperature boundary

conditions (from the wall temperatures). Inflow temperature was always 290K
but outflow temperature was extrapolated from the interior solution in the usual

manner of Manifest. Flow was prescribed as spatially-uniform at the two inlets.

The expected result was that heat conduction across the thermal boundary layer

near the wall would heat the gas. In equilibrium, this heat would be advected

out the two ends by the flow (enthalpy transport). Agreement between the en-
thalpy advected out the ends and the net wall-to-gas heat transfer was to be a

check on the degree of convergence in Manifest.

My goals was to compare these results with those produced by a one-

dimensional model using a steady-flow correlation for heat transfer. I chose

to use the GLIMPS computer simulation [7] for this becaase I had no exact

analytic solutions available. I don't think they exist. Also, GLIMPS is commer-

cially available software and comparisons with it and other models are always
welcome.

Because of the planned GLIMPS comparison, I did not want to introduce

any fictitious viscosity multipliers into Manifest to get the dimensionless groups

to come out right. Instead, I decided to do any necessary tuning by adjusting

either pressure or frequency. Initially I set pressure at 25 bar which I thought

35

was a fairly typical value. But, this forced frequency to be relatively low -- on
the order of a few Hertz. This caused problems.

Like most solvers of partial differential equations, Manifest has stability lim-
its. In the case of compressible fluid dynamics solvers, a classical measure of

numerical instability is the Courant number N_ = cAt/Az where c is the sonic

velocity, At is the time step and Aa: is the physical grid spacing. Explicit meth-

ods fare well with N_ below about one. Manifest does much better, allowing N_

to get as high as several hundred before running amok. But, there are limits.
With Ax relatively small, in the present computational domain, and At rela-

tively large, at the low frequency, Manifest went unstable. One fix would have

been to just increase the number of time steps per cycle (presently about 16 to
18), but this would have been costly in terms of computer time. There was a

better way. I reduced pressure instead.

As a result, the pressures of the simulations in this section are somewhat

lower than normal (0.25 and 2.5 bar) and the frequencies somewhat higher (431

Hz). But, this is why we have dimensionless groups. Since R_, V, and 6/L are
all where they should be, things like absolute pressure and frequency are not

important. I expect that future researchers who attempt to use Manifest to

model realistic stirling heat exchangers will encounter similar problems. They

can solve them the same way.

Results and Comparisons

I chose to model two cases. The first case has a peak Reynolds number of 100 and

a Valensi number of 5 (Pressure = 0.25 bar, frequency = 431 Hz). Under these

conditions, the steady-flow assumptions in GLIMPS should be fairly accurate,

and one would expect GLIMPS and Manifest to agree fairly well. The second

case has a peak Reynolds number of 1000 and a Valensi number of 50 (Pressure

= 2.5 bar, frequency -- 431 Hz). According to thermal entry length tables for

laminar parallel-plate flow, also in Kays and London ([10] Fig. 6-17, p. 134),

the steady-flow Nusselt number is enhanced by a factor of about 1.8 over the

fully-developed value under these conditions. Since GLIMPS does not have an

entry length correction factor, the two programs should begin to differ for this
case. Both cases have a tidal amplitude ratio 6/L of 1.0, very close to typical

stifling practice. Figure 2.30 shows the simulated velocity profiles for the two

cases. Note the blunter profile (higher V_) and longer entry length (higher Re)
of the second case.

Tables 2.3 and 2.4 give the comparison between GLIMPS and Manifest.

Viscous dissipation numbers are about the same in both cases and the two

programs seem to agree fairly well. Apparently, Valensi number is not yet high
enough to significantly perturb the velocity boundary layer. But even if it had, I

would still expect good agreement because GLIMPS includes a Valensi-number

adjustment (based on the exact solution for oscillating incompressible flow) for

laminar friction factors. Heat transfer agreement is good in the first case but

36

=m

---->_ _ =:_ ==::_ ===g: =:::=_ ==:=_ :=:=g: ==:=:g:=::::_=:::::_=:=::g:

==2:: ==:¢: =:::_ ==::_ -"_ ----_ -----_ --"-_ "--'_ ---'_ -"'-_ -"_
2=-

Figure 2.30: Developing peak velocity profiles for the two gas-to-wall heat trans-
fer problems. Top case: Re = 100, Va = 5 and 6/L = 1. Bottom case: Re =

1000, Va = 50 and 6/L = 1.

GLIMPS (W) Manifest (W) Ratio

Wall-to-Gas Heat Transfer 28.1 25.1

Viscous Dissipation 10.1E-1 7.8-1

0.9

0.8

Table 2.3: Manifest and GLIMPS comparisons at R_ = 100, I/, = 5, 6/L = 1.

Manifest predicts about 1.4 times more heat transfer than GLIMPS for the
second case. This is as expected, although, somewhat less than that predicted

from the steady-flow thermal entry length correction factor mentioned above.

Evidently, Vanlensi number is high enough to have some affect. GLIMPS has no

Valensi-number-dependent film heat transfer correction factors built in because

of the lack of an exact analytic model.

The effect of oscillating flow on the growth of the thermal boundary layer

can be seen in figures 2.31 and 2.32. Shown there are temperature contour plots
at the instant of mean-flow reversal (from left to right) and 60 and 120 degrees

beyond. (Degrees in the phasor sense: one full period is 360 degrees.) The
second half-cycle is just the mirror image of the first half. Figure 2.31 is closest

to steady flow, but even so, the effects of flow oscillation are apparent. The

temperature boundary layer at the flow reversal point shows significant remnants

from the previous half cycle. As flow advances in the rightward direction, a more

normal boundary layer develops, but it continues to change over the course of

the cycle. Figure 2.32 is qualitatively different. The lumpy boundary layer

GLIMPS (W) Manifest (W) Ratio

Wall-to-Gas Heat Transfer 93.1 132.9 1.4

Viscous Dissipation 9.9E-1 8.4E-1 0.8

Table 2.4: Manifest and GLIMPS comparisons at Re = 1000, V, = 50, 6/L = 1.

37

I

Figure 2.31: Thermal boundary layer development for the first heat transfer
problem. Re = 100, Va = 5 and _/L = 1. Top to bottom: 0, 60 and 120 degrees
after left-to-right flow reversal. The contour interval is 2.25K

L

Figure 2.32: Thermal boundary layer development for the second heat transfer
problem. Re = 1000, Va = 50 and _/L = 1. Top to bottom: 0, 60 and 120
degrees after left-to-right flow reversal. The contour interval is 2.25K

is, presumably, due to the beginnings of flow instability at the high Reynolds
number. Averaging out that effect, the boundary layer is much thinner than
before. This is due to the blunter velocity profile. As before, the thermal
boundary layer continues to develop over the entire course of the cycle.

2.5 Epilogue

So these are the sample problems. Although it was a struggle to produce them
with my tenuous, slow and unreliable communications link to the NASA Lewis
Cray computer, I am pleased with the results. I think they have borne out
Hamming's motto (quote at chapter beginning). I, at any rate, have seen new
light.

While Manifest is already a powerful investigative tool, it could be bet-
ter. Should there be a next version of Manifest, the first-priority new feature

38

should be, in my mind, a turbulence model. High Reynolds number modeling in
heat exchangers and piston-cylinders could lead to important insights into areas

which dramatically affect stirling performance. Another priority, would be some

sort of adaptive control over the computational grid. It would be nice to have

a means to concentrate the grid around points of interest and avoid problems

near concave corners of the computational domain. A less pressing need, but

fair thought nonetheless, would be the ability to generate curved boundaries for

the computational domain. After all, not all boundaries in stirling machines are

straight. And the icing on the cake would be a fully three-dimensional Manifest.

However, the current generation of computers -- even supercomputers -- is too

slow for this. Assuming the required hardware improvements are forthcoming,

it would be fairly straight-forward to convert the basic Manifest computational

algorithm to 3-D, but the graphical input and output routines would require
major re-thinking. So then, if the present version of Manifest is a milestone for

stifling flow modeling, the end of the road is still a ways off.

This ends the general-interest section of this report. Many readers will want

to stop here. Those who want to actually use Manifest should read the following

user's guide. Those who want to delve even deeper can go so far as to read the
subsequent chapters on theory.

39

Part II

User's Guide

4O

This part of the report assumes that you have access to the Manifest software

and want to learn to use it. Even without the software in hand, the overview

of chapter 3 might be of general interest. To make best use of the tutorial in

chapter 4 and the reference guide in chapter 5, you will need the PC version

of Manifest. If you have access to the mainframe version of Manifest, then you

will want to read chapter 6.

41

Chapter 3

Overview

Manifest comprises three program modules -- MFSETUP, MF and MFOUT --

which perform the input, main simulation and output respectively. The three
modules communicate by reading and writing disk files. Using three separate

modules in sequence gives flexibility to Manifest: For example, you may choose

to run the computationally-intensive main simulation on a Cray rather than a

PC. Or you may review the output at any time without the need to re-run the
main simulation.

MFSETUP contains graphics-based input routines that allow you to inter-

actively specify the shape of the computational region and its associated nu-
merical parameters. The source-level data files read and written by MFSETUP

are named username.DAT where username is up to you. In addition to speci-

fying input data, MFSETUP is also responsible for calculating the curvilinear
computational grid on which the solution will be obtained. When finished, the

source-level and derived variables produced by MFSETUP are written to two
disk files named _MF1.TXT and _MF2.TXT in preparation for the simulation

stage. The reason the source file is duplicated in _MF1.TXT is to avoid syn-

chronization problems in case the source file is modified before the output file
is created.

The main simulation, MF, reads the files _MF1.TXT and _MF2.TXT and

time-steps its finite-difference solution algorithm for a prescribed number of

iterations, or until convergence. MF comes in two versions: a PC version and a
mainframe version. The PC version displays the solved velocity field after each

time step to indicate that progress is being made in what otherwise might appear
to be a dead machine. Execution time may be several minutes (or even hours!)

depending on the size of the problem. The mainframe version runs in batch
mode and produces no visible output until finished. The PC version writes the

solved gasdynamic variables in files _MFSTEP.nnn -- one for each output time

step. The file extension nnn is the time-step number. The mainframe version

writes the solved variables in a single file _MFSTEP.ALL which is essentially the

42

unionof the_MFSTEP.nnn files. Each version also writes a small status file

_MFSTATU.TXT containing information about the last step simulated and the

state of convergence. And sometimes, each writes a file _MFSTEP.DV containing

solved-variable increments for the most recent integration time step. Manifest's

solution algorithm needs this data in case you want to re-start the solution from
where it left off. The _MFSTEP.DV file is only written in the event there is more

than one integration time step per output time step.

The output program, MFOUT, reads the _MF1.TXT, _MF2.TXT,

_MFSTEP.nnn and _MFSTATU.TXT files produced previously, and then enters

an interactive output mode which allows you to examine the results of the
simulation in your own way. Output file _MFSTEP.ALL, produced by the main-

frame MF module, must be converted to _MFSTEP.nnn format before running

MFOUT. There are two ways to view the output graphically: in terms of a

mass-flux vector field or in terms of contour plots for pressure or temperature.

You can scale the graphics view-port to home-in on regions of interest and also

change vector lengths and contour intervals. Using arrow keys, you can play

back the simulation step-by-step in a sort of moving animation of the solu-

tion. In addition there are several categories of tabular information that you

can examine: energy integrals in regions, energy fluxes through boundaries and

Fourier Coefficients. In each of these categories you are presented with a menu

of possible sub-choices and then asked to select the region, boundary or point

of interest by point-and-clicking the mouse. While this is going on, MFOUT is

constantly updating a diskfile named OUTPUT with a log of any tabular output

displayed in interactive mode. OUTPUT also contains a human-readable listing

of the input variables, but since it is an ASCII file, no graphical information.

3.1 System Requirements

The recommended system is:

• IBM-XT or -AT equivalent or Intel 80386-based computer.

• MS-DOS operating system; version 2.0 or higher.

• Floating-point math coprocessor.

• 512-640k RAM

• Graphics display capability

• Memory-resident graphics display printing utility

• Hard disk

• Mouse pointing device

• Link to a Cray Supercomputer

43

A math coprocessor is all but essential for running floating-point bound pro-

grams such as Manifest. It speeds up execution by a factor of about 15. Without

one, the program will limp along badly.

Because Manifest displays everything in bit-mapped graphics mode, some

sort of graphics display capability is required -- the higher the resolution the

better. Manifest is fairly flexible on this point since it is able to automatically

adapt itself to a wide range of common display devices.
Distributed with Manifest is a memory resident driver PRTSCRN.EXE which

allows you to dump graphics-screen images to an IBM-compatible dot matrix

printer. You must first load PRTSCRN (by typing it at the DOS command

line), after which you activate it by pressing the Shft-PrtSc key combination.
For wider printer support, including Hewlett Packard compatible laser printers,

third-party software is available for the job. One such package is the GRAF-
PLUS utility marketed by Jewell Technologies 1 .

A mouse is needed to support graphics editing functions. You can, in the-

ory, get by without one: All mouse operations can be done via the keyboard.

However, not having a mouse will slow you down a lot and may drive you crazy.
The Microsoft and Mouse Systems mice are both supported.

A hard disk is recommended since the Manifest programs read and write

some large data files. Also the programs themselves take up a lot of space. You
should have one or two megabytes of storage available to keep Manifest related

files. If you really had to, you could probably get by without a hard disk but

you might wind up doing a lot of floppy disk swapping.

Having a link to a Cray supercomputer means that you will be able to run the

computationaUy-intensive MF module in a supercomputing environment (pro-
vided it is installed there) thereby speeding things up and increasing your ability

to resolve small-scale phenomena in the solution. This capability is completely

optional: Manifest can run just fine within a PC environment. Moreover, with

the rapidly developing status of microcomputers, the need for a supercomputer

is becoming less and less important. However, for the moment, the lack of a

supercomputer means that you will bump into speed and memory limitations
somewhat sooner than otherwise.

3.2 Files

The following files are distributed with the PC version of Manifest

1jeweU Technologies, 4740 44th Ave. Southwest, Suite 203, Seattle WA 98116, tel: (206)

937-1081.

44

MFSETUP.EXE

MF.EXE

MFOUT.EXE
PRTSCRN.EXE

DSPLYATR.TXT

,.FNT

Input program module
Main simulation module

Output program module

Graphics screen dump utility

Display attribute specifications
Font files

If you plan to use the program a lot, you should copy the above files to a

hard-disk directory specifically set up for Manifest: \MANIFEST, for example.

The display attribute file DSPLYATR.TXT is an ASCII file which tells Man-

ifest how to set its display colors. It contains three lines, each with the name of

a variable followed by an integer value. The variables are:

PenColNum Color of text and other objects drawn on the screen

BackgroundColNum Background color

BorderColNum Color of the border outside the normal display region

You may change the numeric values using any text editor. Just be sure not

to delete any of the spaces between a variable name and its value. The first

twenty columns are reserved for the variable name. The color palette is based

on the IBM EGA coding scheme. Table 3.1 tells you what to expect for various
numeric values.

Except for the font files, all files that Manifest reads or writes are in standard

ASCII format. This means you can examine (or even modify) them with any
text editor. More importantly, it means that you can pass files back and forth to

another computer system without difficulty. This comes in handy when running

the MF module on a supercomputer. However, there is a price: File input and

output are relatively slow. It takes longer to interpret an ASCII file than, say, a

binary file containing an exact memory image of the data. As disk access times

get faster and faster, this should become less of a problem.

Value Color Value Color

0 black 8 dark gray
1 blue 9 light blue

2 green 10 light green

3 cyan 11 light cyan

4 red 12 light red

5 magenta 13 light magenta
6 brown 14 yellow
7 white 15 intensified white

Table 3.1: Decimal color codes for DSPLYATR.TXT file.

45

Chapter 4

Tutorial

4.1 MFSETUP Tutorial

The preeminent feature of MFSETUP is its interactive graphics-oriented in-

put editor. Using operations similar to those in PC drawing or CAD programs,

MFSETUP facilitates the job of building up a complex two-dimensional compu-

tationM domain from a stack of quadrilateral-shaped sub-regions. MFSETUP

gives you considerable freedom to choose the order of events you will use to
define a computational region and to correct mistakes as they occur. In current

computer-science jargon, MFSETUP is pretty much a rnodeless editor, which

means that you control the program rather than the other way around.
The purpose of this tutorial is to introduce you to the input editor without

emphasizing the physics of two-dimensional flow problems. Accordingly, a sim-

ple but pointless example is worked out that illustrates all the major features

of the input editor but is of little interest beyond that. However, once you have

worked through the tutorial, you should begin to see how MFSETUP can be
used to set up problems of practical value.

You will find important additional information in the input variable glossary

of section 5.1.5. By understanding the variables defined there (all accessible

through the input editor) you will begin to develop a feel for exactly what is

possible with Manifest.

4.1.1 Starting

Make sure the default drive or directory is the one containing the Manifest pro-

gram files. Type MFSETUP then press return. The first thing MFSETUP does

is to automatically determine the display adapter and mouse driver your com-

puter is using. If all goes well, MFSETUP will correctly identify your system,

pause briefly, then continue. If something goes wrong -- and MFSETUP gets

46

confusedaboutyoursystem-- there is currently no way to set things straight.

Sorry.

If things have gone well so far, you will see the display shift over to graphics

mode and the following prompt line appear:

Enter data file name (.DAT assumed)

Type SAMPLE then press return. MFSETUP will search for SAMPLE.DAT on

the default drive. Not finding it, the prompt line changes to

New file: enter name of file to start from, or <ret>

Just press the return key and MFSETUP will start from its default input values.

If instead you had entered the name of an existing input file (from a previous

session) MFSETUP would have read that file to obtain starting point data
values.

4.1.2 Main Menu

Now displayed on the top line of the display screen is the main menu for MF-
SETUP.

sample.DAT: F1 edit, F2 save then compile, F3 just save, Esc done

The name of your source-level data file appears first. When you are finished

editing data and choose to save it, this is the disk file to which your data will
be written. The four options presented in this menu are selected by pressing

one of the function keys F1, F2 or F3, or the Escape key. Pressing the Escape

key allows you to exit MFSETUP without updating your input file. You might

want to choose this option if you have screwed things up terribly and want to

try again. Pressing F3 key allows you to update your input file and return to

the main menu in the event you get nervous about a power glitch in the middle

of a long editing session; or if you simply want to protect existing data changes

in case you are about to screw things up terribly in the near future. Pressing the

F1 or F2 keys will set into motion the two major sub-procedures of MFSETUP.

4.1.3 Graphics Editor

At this point, press F1 to enter the graphics-based input editor. Your display

screen should now look like figure 4.1. Variations in appearance are possible

depending on your monitor and graphics display adapter.

The blank rectangle with the "+" (cursor) in the middle is the drawing
area in which you will soon create a computational domain. The computational

domain is the area in which the gasdynamic variables will eventually be solved;

think of it now as just a picture inside the drawing area. The drawing area

is just a window through which you look at the computational domain. The

status line at the bottom of the screen tells you the dimensions of the drawing

47

Select _n _Gt|ViCW _g point-mn_-oliok|ng.

f l I I i _ I I I] I

oo,,,, J-
I

Bdr_S_mo

Rg_Speo

Glob_peo

S_It

--HoveU_tx i

Delet_

ndd

_w __

New i

F_,_M_ Width

y

x height: 2QQ.8 x

I i

t I I I t I

f H ,

m

Figure 4.1: Starting graphics-editor display screen.

area. You will see later how the drawing area can be scaled and shifted about to

accommodated the actual physical dimensions of your computational domain.

Along the bottom and right edges of the drawing area are displayed the
coordinates of the cursor. Try moving the mouse around a bit. The cursor moves
with the mouse and its coordinates are updated as rapidly as possible. The tic

marks along the edges of the drawing area are located at decade subdivisions
of the basic meter unit. These tic marks automatically adapt to the scale and

position of the drawing area.

Using the mouse to point-and-click is the way things are intended to be done
in the graphics-editor. But do not despair if you have no mouse: the keyboard

can be used to do everything the mouse can. As you might expect, the arrow

keys move the cursor around -- one step at a time. Moreover, pressing the

shift key at the same time as an arrow key (or activating Caps Lock) increases
the distance moved. To click mouse buttons without a mouse, simply press the

F9 or F10 keys instead. These F9 key is equivalent to the left mouse button
and F10 is equivalent to the right button. Even for mouse users, the arrow

keys can come in handy when the cursor must be moved exactly vertically or

horizontally or in small increments. Keep this in mind when you are trying to

exactly position vertices of the computational domain later on.
The prompt line at the top of the screen is continually updated to give

you some clue as to what you might want to do next. This particular prompt

suggests that you select an activity by point-and-clicking. For example, move

48

Plot at sta_tin_ _ectan_le b_ clickin_l (le£t t]len _|g]_t) &t opposite co_ne_-s.

ndd] _

l T
I

Figure 4.2: Creating the first region.

the cursor now to the box labeled New and click the right or left mouse but-
ton. The New box lights up and you are ready to define the first region of the

computational domain.

4.1.4 First Region

Referring to figure 4.2 as a guide, position the cursor at any vertex of the small
rectangle shown in the drawing area (not visible yet) and click the left mouse

button. Then move the cursor to the opposite vertex and click the right mouse

button. Note that after clicking the left button and before clicking the right

button, a rectangle is dragged about on the screen with the cursor. This allows
you to see what you're about to create before fixing it. To start over just click

the left mouse button again and you will erase the old rectangle and begin

dragging a new one.

The rectangle you have just drawn serves as the starting region for your

computational domain. Eventually It might represent a regenerator matrix or

a manifold. Later, you will be able to change its shape by moving its vertices

around or change its properties by modifying numerical data parameters associ-

ated with it. In effect you will be able to fill it with a porous material; or leave

it empty. You will be able to change it boundaries into active flow inlets or
keep them as solid walls. And you will be able to stack together several regions

together to form complex shapes.

49

ORIGfNAL PAGE IS

OF POORQUALrTY

Before continuing, be sure your starting rectangle has plenty of room between

its right edge and the limit of the drawing area, as shown in figure 4.2.

4.1.5 More Regions

When you have finished drawing the starting region move the cursor to the box

labeled Add and click either mouse button. You are now ready to add regions to

the initial region. Regions are added to the starting region by tagging squares

onto its left or right boundary. Additions to the top or bottom boundaries are
not allowed.

Move the cursor to a position just right of the right boundary of the starting

region and click a button. A square appears, attached to the starting rectangle's

right boundary. Had you positioned the cursor on the other side of the starting

rectangle and clicked a button, a square would have appeared there. Nothing

would have appeared had you clicked a button while the cursor was above or

below the starting rectangle, or while it was too far to the left or right.

Each time a region is added, its left or right boundary in turn becomes a
boundary where yet another region can be added. In principle, there is no limit

to the number of regions that can be built up in this way. However, each region

carries with it a fairly large memory overhead so there are practical limits.
The designations "left" and "right" used above are somewhat artificial since

the orientation of the computational domain may be altered in the course of

editing. However, once you understand the basic idea -- that the computational

domain is built up of a linear sequence of elementary regions -- you should have

no trouble adding regions.

4.1.6 Changing Shapes

At this point you should have a rectangle adjoined by a square displayed on your
screen. Now move the cursor to the box labeled MoveVrtx and click a button.

You are ready to move vertices around.

Move the cursor to the upper right vertex of the right-most region -- the

square -- and click the left mouse button. Any further cursor movement will

drag a line segment between the selected vertex and the cursor. If yon do not

see this drag-line, re-position the cursor around the upper right vertex -- this

time more accurately -- and click the left mouse button again. Once you are

dragging a line from the selected vertex, move the cursor to the new vertex
position shown in figure 4.3 and click the right mouse button. The selected

vertex snaps to the new position. If you want to adjust the vertex position,

just move the cursor and click the right button again. In general, clicking the

left mouse button selects a vertex for relocation while clicking the right button

re-positions the selected vertex.

Now, using the same basic sequence, move the lower right vertex of the right-

most region to the position shown in figure 4.3. You do not have to get things

5O

Point to It vertex; ollok--left d_agS* elick-l*l_ht £1_es neM position.

I Done --

F_ame _idth K height:

,,,, t, t I, f I _.+I r
_'OO. • _ X91. O _ [

I I 1

Figure 4.3: Moving Vertices.

X3 9 mm

exact, just try to wind up with something that looks similar to the figure so
that the rest of this tutorial will make sense.

4.1.7 Numerical Data

The selection boxes labeled BdrySpec, RgnSpec and GlobSpec are used for enter-

ing numerical data for the exterior boundaries of individual regions, the interiors
of individual regions and the computational domain as a whole. In the cases

of the BdrySpec and RgnSpec options, there are several possible data sets. To

select one you move the cursor to the appropriate region boundary or interior

then click either mouse button. The format for entering data is the same in

each case. The basic ideas are these: A window, containing a list of variables

to be modified, is opened in the display. The variables, defined in section 5.1.5,

are initially displayed with default values which you are free to change. Selec-

tion and modification of variables is performed with keyboard -- not mouse --

operations.

By working through a few examples you will quickly get the hang of entering
numerical data. First, Move the cursor to the box labeled BdrySpec and click

a mouse button. Following the prompt message that appears at the top of

the screen, move the cursor to the right-most boundary of the computational

domain and click the mouse again to select that boundary for numerical data

modification. A window now opens up and the display looks like figure 4.4.

51

=_j _ ,,- C ¸ ,_,

OF POOR _"_'_ '_._-,_L_TY

Es© done

Figure 4.4: A typical numerical-data entry screen.

Numerical input data is always displayed in outline form with indenting used

to separate logical hierarchies. Internally, numerical data lists are stored in tree
form. Branches in numerical data trees can have either a down branch or a right

branch. A down branch is displayed in the same column and signifies a branch

of similar hierarchy. A right branch is indented to the right and signifies a lower
hierarchical level. A plus in front of a displayed name indicates the presence

of a right branch. Note that the root branch boundary is preceded by a plus.

A plus is needed since right-branch subtrees may be initially hidden from view
and you should at least be reminded that they are there.

Colons after names indicate label branches that have no associated input

variable but rather serve as signposts and storage locations for user comments.

For example, a comment can be entered for the branch boundary. In general,
all branch modification occurs at the cursor position -- currently at boundary.

Press the Ins key (usually below the numeric keypad) to enter input mode. The

prompt line immediately changes to

Enter comment

Type tube inlet then press return. The original null comment after +bound-

ary: on the display screen is now replaced with the new comment. Note that the

cursor automatically moves down one line after a value is modified; this feature

simplifies sequential data entry.

The cursor can be moved up and down using the arrow keys of the numeric

keypad. Try it. The PgDn and PgUp keys give added control over the display;

52

theycausethedisplaypageto scroll down or up by one line leaving the cursor

fixed. Cntrl-PgDn and Cntrl-PgUp scroll the display down or up an entire page.

Of course with the small display now showing, the scroll commands are of little

use. But in some cases, the display can overflow the available screen at which

point scrolling control becomes valuable.

Move the cursor to MdotAmp (Amplitude of mass flow rate across boundary)

by pressing the appropriate arrow key then press Ins to modify the current value.

The prompt line now changes to

Enter real valuo

If you simply press Esc now you will return to the main environment without

having changed anything. Try it. Now go back up to MdotAmp by pressing the

up arrow key then press Ins again to actually modify MdotAmp. Enter 1.0E-2

and press return. If you enter a number outside the range suggested in the

prompt you will have to re-enter the number until it falls in the correct range.

Pressing the Ins key to enter numerical data quickly becomes awkward. So,

there is a shortcut that works for numerical data input only. Just start entering
the number and you will automatically enter input mode for the variable at the

cursor position. You'll find that this feature allows you to enter variable lists

very efficiently.

This is enough BdrySpec data entry for now. Changing MdotAmp from 0.0
to 1.0E-2 has the effect of converting the formerly solid boundary into an active

inlet. Press the Escape key now to leave data entry mode. Any changes you
made are stored in memory but the disk file is not yet updated.

The display screen should now be restored to its former state except that

arrows appear on the right boundary of the computational domain; see figure
4.5. In general, arrows indicate the direction and amplitude of the mass flux

per unit area for an active inlet. The length of the arrow is not an absolute

measure of mass flux amplitude. Rather, it corresponds to a relative scale that

depends on the largest mass flux amplitude for the entire exterior boundary of

the computational domain.

The numerical input editor still has a few more features. To see these, move

the cursor to the selection box labeled Rgnspec and click. Then move the cursor

to the interior of the left region of the computational domain and click again.

When the numerical-input window comes up, move the cursor down to the

variable Matrix using the down arrow key. Matrix is known as a decision branch;

it determines whether the region contains a matrix (TRUE) or is empty (FALSE).
In general, a decision branch gives rise to two or more possible sub-branches of

the input tree; the branch selected depends on the actual value stored in the

decision branch. Another example of a decision branch variable is Profile in

8drySpec.

Decision-branch values are modified using the right and left arrow keys.

Press the Ins key, the right arrow key and then return to change the value of
Matrix from FALSF to TRUE. There now appears on the display a new list of

53

Sele©t a pogion extePioP bouodal'_J bsJ point-and-©Iioktng°

I I I I I I I I i i i i i

i i i i t i i I I l I I I I

28a.0 x 191.0 mm] £8.7 mm

I I I +

---- -G2.1 mm

I I

Figure 4.5: An active inlet noted by mass flux arrows.

variables -- previously missing -- displayed after Matrix and indented to the

right. See figure 4.6. These are variables that only make sense when a matrix

is present in the region.

While you are looking at the current display, you might as well modify
some variables to make things more interesting later on in the output part of
this tutorial. Move the cursor to the following variables and change them as

indicated:

• VisMultiplier = 0.0

• Porosity = 0.80

• Dhyd - 1.0E-4

• Cergun[1,1] = 150

• Cergun[2,2] = 150

You need do this for the left-most region only.

It is possible to hide (or re-display) right-branch subtrees from view. For

example, move the cursor back up to the Matrix variable and press the left arrow

key. The right-branch subtree previously displayed under Matrix disappears
from view. It is still in memory -- you just can't see it. To re-display the

hidden right branch just press the right arrow key or the return key. Keep
this in mind whenever you see a variable preceded by a "plus" with nothing

54

OF Poo_ _JAL._/'(

OF PO0_ QUA,_.iiY

Up/Dn _ove: PgUp/Dn cmoll. Lgt oont_ot_ Rt o_pand, ins _od_t£_.

FFlxCo_onBd_ s = FALSE

D T_l_ft _ _.QQOOE_Q2
one T Ight _ 3,0QQQE÷Q2/ |

____a l NgamM_lttplle_ _ 1.00Q0_÷10

t ÷M_t_Ix = TRUE

Bde_Npee RhoSolid = 0.OQgOE÷03
Clo|ll = 4.60111"D2

Po_ositM : 8.gggQ_--01

DNu_ = 1.0000E-_4 --

i I I I I I I [I I I I t i i
I 2m 0 w_

I 1

Figure 4.6: Hidden variables under the Matrix decision branch.

displayed indented to the right. This situation will arise if you press escape now

to enter graphics-edit mode then re-enter numerical-input mode by clicking the

mouse with the cursor in the same region as before. The display comes up with

Matrix = TRUF preceded by a "plus" but without the right subtree displayed.

There is one more data entry required to avoid difficulty in the solution stage

later on. Enter GlobSpec and change the frequency variable to 500. This rather

fast frequency has the effect of reducing the default time step to the stable range

for this particular problem. More on this time-step limitation in section 5.2.1.

4.1.8 Scaling

At some point you will want to magnify or reduce your picture, or shift it's

position in the drawing area. This is done with the Scale function.
Move the cursor to the selection box labeled Scale and click. Pressing the

gray "+" key increases the size of the picture while pressing the gray "-" key

reduces the size. Try it. The physical coordinates of the computational domain

are not affected by all this, the limits of the drawing area are all that change.

(There is no way to scale the physical coordinates of the computational domain

other than with the MoveVrtx function.) Note that the status line at the bottom

of the display changes to reflect the changing dimensions of the drawing area.

Shifting the position of the computational domain is a two-step process. First

move the cursor to the point you want to be in the center of the display rectangle.
This point can be anywhere on the boundary or interior of the computational

ORIG_._,_ALPAC_ IS

OF pOOR QUALITY

55

Figure 4.7: Scaling the display rectangle.

domain. (It can even by on the exterior although this ordinarily will not make

much sense.) Then click either mouse button. The computational region now

shifts so the selected point lies at the center of the display rectangle. It is not
possible to rotate the computational domain. In preparation for the next stage,

press the gray "+" key a few times and shift the display around until it looks

about like figure 4.7.

4.1.9 Removing Regions

The right-most or left-most regions of the computational domain can be removed

by selecting the box labeled Delete. This feature allows you to correct mistakes

or edit existing computational domains into new ones. When the Delete box

is highlighted, clicking the mouse in either the right- or left-most region will
remove it from the computational domain -- permanently! There is no undo

function so be careful. Any numerical data entries you made for a deleted region
are lost forever. Your only recourse to a mistaken delete is to reconstruct She

missing region from scratch. For now, if you want, you can first select Add to

add an extra region, then delete it. But before continuing, be sure your display

continues to look something like figure 4.7.

56

ORIGINAL PAGE |S

OF POOI QtJAt.ffY

PleAse itAnd bY _hile I c_lculate t_e ©u_vilinea_ gpid

Figure 4.8: Calculating the curvilinear grid.

4.1.10 Return To Main Menu

At this point you have seen everything that the input editor can do and are

ready to move on. Move the cursor to the box labeled Done and click. The

prompt line changes to the main menu.

sample.DAT: F1 edit, F2 save then compile, F3 just save, Esc done

Press F2 and MFSETUP will first save your input data to disk, then calculate

the curvilinear coordinate grid that satisfies the boundary conditions specified

by your computational domain.

4.1.11 Curvilinear Coordinate Generation

If all goes well your display will look like figure 4.8 for a few seconds while
it calculates the curvilinear grid. Each of the two coordinates is solved in a

separate iterative process. The "System RMS error" is an overall measure of the

degree to which convergence has been obtained -- the smaller the better. When
the value gets below the tol input parameter convergence is deemed satisfactory

and iteration stops. The message "Solving System equations..." refers to the

solution of a large set of linear equations involving a matrix triangularization

step followed by a back-substitution step. The message "Re-solving system

equations" refers to the case where only the right-hand side of the equation

system has changed, eliminating the need for the matrix triangularization step.

57

s_p|e. DAT: FI edlto F2 s&vo the_ Oo_pi|e. F3 J_s_ mavw° ZsO dono

Figure 4.9: The solved curvilinear grid.

When the program is finished calculating, the display changes to look like

figure 4.9, the output files _MF1.TXT and _MF2.TXT are written to disk and
control returns to the main menu. The computational grid is presented as a net

of coordinate curves, the intersections of which are the nodes of the grid where

the gasdynamic variables are solved. The displayed size of the grid corresponds
to the size of the computational region displayed in the graphics editor. You

can affect the size here by using the Scale function there.

At this point you should see the main menu displayed at the top of the

screen. You can now re-enter the graphics editor to play around some more

or simply press the escape key to return to the operating system. If you have
followed this tutorial more-or-less faithfully, you should now have a viable input

file on the disk for the main simulation to follow. Pressing Escape will allow

you to run that simulation next.

4.2 MF Tutorial

This section describes only the PC version of MF. The mainframe version is

conceptually similar except that it runs in batch mode and produces no visual

display during execution -- see section 6.
At this point you should have on disk, the two MF input files: _MF1.TXT

and _MF2.TXT, which you produced by running the input program MFSETUP
as described in section 4.1. MF always gets its input from the most recent run

58

P_es_ Esc to e_i t _£te_ ne_t o_tput t|_e stop

-,y

_otvin

setting _p sMstwR; oo_ntdo_n = 8 ? 6 5 4 3

Figure 4.10: A typical display during MF execution.

of MFSETUP.

Type MF at the DOS prompt to start execution. The program begins by

reading its input files and initializing data structures. It then starts time-

stepping through the solution until you halt execution or it decides on its own
that it has attained convergence to a steady state cycle. This may take quite a
while.

Figure 4.10 shows a typical display screen during execution. The main dis-

play window shows the mass flux vector field for the most recent time step.

The size of the computational domain in the window is the same as it was in
edit mode of MFSETUP. Another window at the bottom of the screen gives a

blow-by-blow account of the solution.

The left region of the computational domain is shaded because it contains a

porous matrix (Matrix = TRUE). The matrix right boundary is curved because

it follows the coordinate lines of the computational grid.

The line that reads: "Setting up system; countdown = 9 8 7 ..." is there
mainly to assure you that your computer is doing something productive while

you wait. A number is printed for each row or column of the computational

grid while MF is evaluating partial derivatives for the system Jacobian matrix.

The line "solving system ..." tells you that the system of linear equations,

whose coefficients are the Jacobian matrix, is being solved. For more information

about the solution algorithm see section 9.

The line that reads: "Step 2 RMS solution change is N/A " tells you that

59

e'_= _!,L FS'?:: iS

time step 2 has just been solved but insufficient steps have so far been taken for

MF to compare the present solution with that of one cycle previous. Had the

simulation been running for more than one cycle, the N/A would be replaced by

a number giving the root-mean-square difference of the present dimensionless
solution variables with those of the same time for the previous cycle. The time-

step numbers are displayed modulo node_T -- where node_T is the number of
time steps per cycle -- so that they repeat at intervals of exactly one cycle

period. Should the RMS solution change ever fall below the input variable
GasdynarnicTol, then MF will assume convergence has been achieved and stop

time-stepping.
As the top line of the display tells you, you can temporarily stop execution

at the next time step by pressing the escape key. No matter when you press

it, execution will continue until the current step has been solved. Once you've

stopped execution, you can resume again at the place you left off by simply re-

starting MF. This feature is handy if you want to examine the output in more
detail with program MFOUT, or, if you just want access to your computer

for any reason. This restart feature is available until the next time you run

MFSETUP to produce new input files. If you are really pressed for time and
want to halt execution immediately, just re-boot your computer. Since, MF

updates the solution variable files _MFSTEP.nnn and status file _MFSTATU.TXT
after each time step, you will only lose information from the pending time-step.

And, you will still be able to restart MF from that point.

In a nutshell, that's it. There is very little interaction required with MF.

You need only monitor the display from time to time to check the progress

of the solution. If something does go awry, then you will need to go back to

MFSETUP and revise your source data. For more information on what might

go wrong with MF see section 5.2.

For purposes of this tutorial you should let the sample problem set up in
section 4.1 run for at least one cycle before halting execution. Then you will be

able to make best use of the following MFOUT tutorial. However, if you cannot

bear to wait that long, you need only complete only a few time steps before

stopping. In this case, you will be able to examine most of-- but not all of --
the features of MFOUT.

4.3 MFOUT Tutorial

The output module MFOUT is an interactive program designed to let you view

Manifest's solution in your own way. At this point you should have run MF for

at least a few time steps, as discussed in section 4.2, in order to have produce

some _Mi=STI=P.nnn files containing the raw solution data.

Now type MFOUT at the DOS prompt to start the program. MFOUT
spends a little time at the beginning reading the source-level data file _M I=I.TXT,

the compiled-level data file _MF2_TXT, the _MFSTEP.nnn files and the status

6O

file _MFSTATU.TXT; with the bulk of its initialization time spent reading and

processing the _MFSTEP.nnn files. The status line at the bottom of the display

tells you which time step is currently being processed.

MFOUT produces an output disk file named OUTPUT which is overwritten

each time you run the program. OUTPUT contains a log -- in ASCII text

format -- of your output session. The first part of the output file is a copy

of your source-level input data in human readable form; after that it depends

on your interaction with MFOUT. All textual information displayed on the

screen is copied to the output file but no graphical information. When finished

with MFOUT, you can examine the OUTPUT listing with any text editor or
word processor, or print it on any printer. More information on the format for

OUTPUT is provided in section 5.3

When you see the screen shown in figure 4.11 you are ready to begin inter-
active output mode. Just as in MFSETUP, the idea here is to point-and-click

with the mouse to make activity selections from the boxes at the left of the

display. The line in the display that reads,

"_*_b__nge > GasdynamicYol; Solution has not yet converged.

is a reminder that although a full cycle has been simulated, convergence has
not yet been attained. Your display may or may not show this line. Another
possibility is,

Thin output is for an incomplete cycle.

which is a reminder when there are insufficient _MFSTEP.nnn files produced to
make up a complete cycle.

4.3.1 Scaling

Several of the options in MFOUT start out by drawing the basic solution domain

outline. In each case, the relative size and position of the domain within its

display window are the same. The Scale function allows you to control the part

of the solution domain you wish to view and the magnification at which you
view it.

Scale works exactly as in MFSETUP. The gray "+" key increases the appar-

ent size of the picture while the gray "-" key reduces it. Pointing-and-clicking

the mouse at a point within the display window shifts that point to the center.
Point-and-click the SCALE box at this time to enter scale mode. You should

now see the outline of the computational domain in the same proportions (rel-
ative to the display window) as you left it in MFSETUP. You are welcome now

to play around until the picture looks good to you. Figure 4.12 shows a typical
screen appearance in scale mode.

61

Select an _©ttvttw bM point-and-clicking.

Done

So_lw

Fou_ie_

Fl_xlnt '_

El*evgwlnt

UeuP|ot

t _ sChange > Galdwna_ioTol; Solution has not Met conoe_ged.

ContP|ot

Figure 4.11: The starting screen for interactive output in MFOUT.

G_g (*) enlarges; Gram (-) s_lnks; _e-position by point-and-clicking.

Figure 4.12: The display appearance during Scale.

62

o_ -) scales uecto_ lengths; lnove_ent tl_e _lth a_ow keus.

ri_e stev

" <)?i._- - -_ " 4-

?.:.?:_

Figure 4.13: A typical vector plot display

4.3.2 Vector Plots

Move the cursor to the box labeled VecPlot and click the mouse. You are now in

vector-plot mode which produces plots of mass flux per unit total area for each

time step. Pressing the right or left arrow keys increments or decrements the

time-step number by one. Try it. The current number appears at the bottom

left of the display window. Pressing the gray "+" or "-" keys scales the lengths

of the arrows. Play around with this until you get the picture most pleasing to

you. Figure 4.13 shows a vector plot for our sample problem. If for some reason
you want to home-in on a particular part of the computational domain, just use

the Scale function to re-position the display window, then return to VecPIot.

4.3.3 Contour Plots

Move the cursor to the box labeled ContPlot and click the mouse. You are now

in Contour-plot mode which can produce pressure or temperature contours for

each time step. Since there is more than one option you are presented with a

menu list which you can scroll through with the up and down arrow keys. Try
it. Now scroll up to the top selection Pressure and press return.

You are now ready to view pressure contour plots. The right and left arrow

keys change the time-step number as before. Press the right arrow key several
times to get to a time step where the velocities are significant -- about time

step 4. The gray "+" and "-" keys control the spacing of the contours. Press

63

G_ay (_) ¢_ (-) z©ales oontou_ lnte_v_lJ in¢_e_ent ti_e with ar_o_ ke_s.

Dono

VecPlot I

'i_e step 4, P_essu e interval (N/_2) = 1 ??03E+82

Figure 4.14: A typical pressure contour plot display

the gray "-" key a few times until you see a pleasing number of contour lines.

Figure 4.14 shows a contour plot for our sample problem.

4.3.4 Energy Flux Integrals

This option tabulates cyclic time integrals of energy flux passing through the

various region boundaries within the computational domain. Although you are

allowed to select this option without having simulated a complete cycle, Manifest

assumes that flux integrands are zero for any time step not represented by a
_MFSTEP.nnn file.

Move the cursor to the box labeled Fluxlnt and click the mouse. You are

presented with a menu of several possible selections. Press return to select
the Advected Energy Flux option. The display screen should now look about

like figure 4.15. Point-and-click the cursor on the right most boundary of the

region labeled 2. Immediately the net cyclic advected energy (enthalpy -F kinetic
energy -I- viscous stress work) through the selected boundary is displayed. _'ou

can point-and-click on any region boundary. The results are displayed and also
recorded in the OUTPUT file.

4.3.5 Energy Volume Integrals

This option tabulates cyclic time integrals of net energy change within the vari-

ous regions of the computational domain. Again, for an incomplete cycle, Man-

64

Select an ot_tput _egion boun_aP9 b9 point-and-clicking.

Region m. Sid_ @o Her _dvecte_ enepgW £1ux thPough iide (M)
I._303E_QI

_ A OaQ6Z Q2Q.OaOa£÷OQ

Figure 4.15: A typical energy flux integral display

ifest assumes that energy integrands are zero for any time step not represented
by a _MFSTFP.nnn file.

Move the cursor to the box labeled I=nergylnt and click the mouse. You

are presented with a menu of several possible selections. Press return to select
the Porous Dissipation option. The display screen should now look about like

figure 4.15. Point-and-click the cursor in the interior of the region labeled 1.

Immediately the net dissipation due to porous flow resistance in that region is

displayed. You can point-and-click in either region interior. The results are

displayed and also recorded in the OUTPUT file.

4.3.6 Fourier Coefficients

This option tabulates Fourier coefficients of several fundamental variables at

the various nodes of the computational grid. You are not allowed to select this

option unless you have simulated a complete cycle. Manifest will beep at you if

you try.
Move the cursor to the box labeled Fourier and click the mouse. You are

presented with a menu of several possible selections. Press the down arrow key

three times then press return to select the rho V_I option (horizontal component

of mass flux per unit total area). The display screen should now look about

like figure 4.17. Point-and-click at any computational node of your choice (the

intersections of the coordinate curves). Immediately the mean value of rho

65

Select An output _egion _y polnt--Mnd--oltok_ng,

Co_tP]ot
• . " i "

3 O. QR_3E_ R43

Figure 4.16: A typical volumetric energy integral display

V_I for that node together with the first-harmonic amplitude and phase are

displayed. You can point-and-click to any node in the computational domain.

The results are displayed and also recorded in the OUTPUT file.

4.3.7 When Finished

This concludes the MFOUT tutorial• You are welcome now to play around with

the output program• When you are finished, move the cursor to the box labeled
Done and click the mouse• This will return you to DOS. You can now print

the OUTPUT file or examine it with a text editor• Remember, if you re-start

MFOUT you will start over with a completely new OUTPUT file.

66

Select _ Co_ ,ut_tion_l _ld location b_ point _nd-clicking.

U_4:Plot

It, 12.

l, U_JL4: (N_/s/m2). _pl (kg/s/m2), pNase (_J).5193E--09 5,2249E-OX -3.14

.2782E-g3 1.6717E-_1 2.96

._000E_UO 9.@@@0E÷@@ -1.37

Figure 4.17: A typical Fourier coefficient display

67

Chapter 5

Reference Guide

5.1 MFSETUP Reference Guide

5.1.1 File Selection

After starting MFSETUP, one or more of the following initial prompts will

appear:

Enter data file name (.DAT assumed)

Type the name of an existing data file (omitting the OAT file extension) or a

new name if you are starting from scratch. Your data entries will be stored in

this file. If the name of a new file is entered, the prompt line changes to

New file: enter name of file to start from, or <ret>

Type the name of an existing file you wish to use for initial variable values in

your new file. If you simply press the return key, default initial values will be

used. If the star!,ing-value data file you typed in cannot be found on the default

directory, the prompt line changes to

File not found: enter name of file to start from, or <ret>

This is a second-chance version of the previous prompt. If you need to examine

the disk directory at this point, press return, then exit to DOS by pressing

Escape.

5.1.2 Main Menu Commands

The main menu is in force whenever you see the following prompt displayed at

the top of the screen.

source.DAT: F1 edit, F2 save then compile, F3 just save, Esc done

The name of your source-level data file (here source.DAT) appears first on the

68

prompt line. When you see the main menu, the following commands are avail-
able:

F1 Enters the graphics editor.

F2 Sets the following sequence into motion:

• Saves your source-level data file to disk.

• Calculates the curvilinear computational grid.

• Writes the output file _MF2.-I-XT to disk.

• Returns to the main menu.

F3 Saves the source-level data file to disk then returns to the main menu.

Esc Returns to DOS. Saves nothing to disk.

5.1.3 Graphics Editor Command Summary

Pressing the F1 key from the main menu invokes the graphics editor. The editor

is designed so that point-and-click operations with the mouse perform most of

the operations. A menu of activities or functions is presented along the left

edge of the screen. Each activity is represented by a word in a rectangular box.

Moving the cursor to the interior of an activity box and clicking the right or left

mouse button, selects that activity for execution.

Moving the Cursor

Depending on its location, the cursor is represented on the display by either
a "+" or an arrow. Normally the cursor tracks the motion of the mouse as

you move it. If you don't have a mouse, or if you need finer control than the

mouse provides, the keyboard arrow keys can also be used to move the cursor.
The unadorned arrow keys move the cursor about one pixel in the indicated

direction. Holding a shift key down while pressing an arrow key increases the

size of the step.

Mouse Button Substitutes

The right and left mouse buttons are needed frequently in the graphics editor.

If you have no mouse, use the F9 key as a substitute for the left button and the

F10 key as a substitute for the right button.

New

Use this function to create the first region of the computational domain. You

may create exactly one rectangle, positioned anywhere in the drawing area.
When the cursor is located in the drawing area the mouse buttons work as
follows:

69

• Left Click: Fixes the first vertex of the rectangle.

• Right Click: Fixes the opposite vertex.

After a left-click, but before a right-click, a rectangle is dragged along with the

cursor. You may erase an existing rectangle by clicking the left mouse button
again.

Add

Use this function to add regions to the computational domain. You may add

squares only to the right- or left-most boundaries of the existing computational

domain. To select which one, position the cursor just to the right or left of

the computational domain (in the interior of the square to be added) and click
either mouse button.

The designations "right" and "left" refer to the orientation of the initial

rectangular region. As the computational domain increases in complexity, the

boundaries to which regions may be added may be re-oriented. If you think of

the computational domain as a topologically distorted stack of rectangles, the
boundaries where additions can occur are obvious.

Delete

Use this function to delete regions from the computational domain. You may

delete only the right-most or left-most region at a time. To delete a region
position the cursor in its interior and click either mouse button. The affect is

permanent and any numerical data entered for a deleted region is lost. The
only possible way to recoup from a mistaken delete is to abort the current edit

session and restart from a recently saved data file. To do this, select the Done

function then press the Escape key from the main menu. This will return you
to DOS without updating your source-level data file. Then restart MFSETUP

as usual, reading your saved data file for input.

MoveVrtx

Use this function to re-position the vertices of the computational domain. When

the cursor is located in the drawing area the mouse buttons work as follows:

• Left Click: Selects a target vertex.

• Right Click: Fixes its new location.

When a target vertex is selected, moving the cursor drags a line from the target
vertex. If you select a vertex but do not see this line, try again: you probably

did not have the cursor cross-hairs close enough to the target vertex when you

clicked the left button. Once you have successfully selected a target vertex you

can experiment with its new location by moving the cursor and clicking the right

70

button repeatedly. Each time you, do the computational region is redrawn with

the target vertex at the current cursor position. Once you have fixed the new
position of the target vertex, you can select a new target by clicking the left

button.

S e ale

Use this function to re-position or scale the size of the drawing area. The

physical coordinates of computational domain are not affected by scaling. Two

keyboard commands are available:

• Gray +: Increases the apparent size of the computational domain.

• Gray -: Decreases the apparent size of the computational domain.

In addition, clicking either mouse button when the cursor is in the drawing area,

re-positions the drawing area so it is centered at the cursor location.

GlobSpec

Use this function to change or examine the values of the numerical data whose

scope is the computational domain as a whole. Once in numerical data entry

mode, the commands of section 5.1.4 are available. See section 5.1.5 for the

meanings of the variables.

RgnSpec

Use this function to change or examine the values of the numerical data applying
to the interior of an individual region of the computational domain. Before

entering numerical input mode you must first select the region of interest by

moving the cursor to its interior then clicking either mouse button. Once in
numerical input mode, the commands of section 5.1.4 are available. See section

5.1.5 for the meanings of the variables.

BdrySpec

Use this function to change or examine the values of the numerical data applying

to an exterior boundary of an individual region of the computational domain.

Once in numerical input mode, the commands of section 5.1.4 are available. See

section 5.1.5 for the meanings of the variables.

Done

Use this function to exit the graphics editor and return to the main menu.

71

5.1.4 Numerical Input Command Summary

Numerical input mode is invoked automatically through the BdrySpec, RgnSpec

or BdrySpec functions of the graphics editor.
Numerical data is stored internally in branching linked lists referred to as

trees. At any given time, some of the branches of the tree might be hidden from

view on the display. You may use the commands below to view hidden branches

or hide them again. Even if it's currently hidden, the (+) prefix displayed before

a branch denotes the presence of a right subtree. You must make sure that all
the variable values in hidden subtrees are correct.

Branch names followed by the (:) suffix contain comments which you may

enter using the Ins command. Comments are displayed after the (:) and are
optional. Branches followed by the (=) suffix are variable names containing

values which you must enter correctly using the Ins command or usually by

simply entering the appropriate number. Variable values are displayed after the

(=)
While in numerical input mode, the following commands are available:

Up Arrow Moves cursor up.

Down Arrow Moves cursor down.

Left Arrow Hides display of right subtree originating from branch at cursor.

Right Arrow Displays next hierarchical level of right subtree originating from
branch at cursor.

return Same as Right Arrow.

PgUp Scrolls display window up one line.

PgDn Scrolls display window down one line.

Ctrl-PgUp Scrolls display window up one page.

Ctrl-PgDn Scrolls display window down one page.

Ins Enters modify mode for variable (comment) at cursor position

• Follow prompts; normally enter a number, then press return.

• Examples: 10, 2.5, .001, 1.0E-3

• Select enumerated variables with right or left arrow keys, then press
return.

• Pressing return immediately will exit modify mode leaving the pre-

vious value unchanged if it is within the allowable range.

• Pressing Esc at any time will exit modify mode leaving the previous
value unchanged if it is within the allowable range.

72

0...9 + - . Anyoneof thesekeysalsoentersmodifymodeasashortcutfor
numericalorcharacterstringinput.

EseLeavesnumericalinputmodeandreturnsto graphicseditor.Datachanges
aresavedin memorybutnotyetupdatedto disk.

Numericalentriesmadewiththenumericalkeypadmustbedonein NumLock

mode. The ordinary shift key will not work because Manifest interprets shft-2,

shft-4, shft-6 and shft-8 as shifted arrow keys.

To remove an existing comment, you cannot simply press Ins, then return,
because this leaves the old comment unchanged. Instead press Ins, space then

return. This will replace the comment with an invisible space.

5.1.5 Glossaries of Numerical Input Variables

MFSETUP leaves it to you to make sure that all the numerical data variables

have the correct values for the simulation you want to perform. You must check

the variables accessible with the ...5pec functions of the graphics editor as
follows:

BdrySpec Check the variables for each active inlet. These are the exterior

boundaries of regions where the variable Mamp is strictly greater than

zero. Active inlets are displayed with arrows. Do not worry about vari-
ables for region boundaries that are not active inlets.

RgnSpec Check the variables for each region of the computational domain.

GlobSpec Check these variables for the computational domain as a whole.

BdrySpec Glossary

These variables apply to exterior boundaries of the individual regions of the

computational domain. Each boundary has its own variable list.

MdotMean : (kg/s)

1/eos(RelAngle)x the mean component of mass flow rate across the total

region boundary. See equation below.

MdotAmp : (kg/s)

1/cos(RelAngle)x the amplitude of mass flow rate across the total region
boundary. See equation below.

Mphs : (radians)
Phase angle of mass flow rate. See equation below.

NullBeg : (dimensionless)

An auxiliary variable for the StepWise velocity profile. The profile is uni-

form except for a null band beginning at x = NullBeg and ending at z

73

= NullEnd. x is the dimensionless position along the boundary; x = -1
at the counter-clockwise-most endpoint and z = 1 at the other endpoint.

Both NullEnd and NullEnd are restricted to the interval [-1, 1]. If NullBeg

< NullEnd then the null band is in the middle of the boundary. If NullBeg
> NullEnd then the null band is split into two parts at each end with the
active flow in the middle.

NullEnd :(dimensionless)

See NullBeg.

Profile : (K)
Specifies the inlet velocity profile. An enumerated selection variable with

the following choices:

Slug Uniform flow across inlet.

Parabolic Parabolic profile as in developed steady laminar flow in channels.

seventhPower As in developed steady turbulent flow in channels.

Ramp A linear profile where the slope is provided in the auxiliary variable

RampSIope.

StepWise Similar to Slug except a null band may be defined in the middle

or at the endpoints of the boundary according to the values of the

auxiliary variables NullEnd and NullBeg.

All profiles are normalized so that the net mass flux through the boundary
is unaffected.

RampSlope : (dimensionless)
An auxiliary variable for the Ramp velocity profile. The profile form is

f=l+mz

where m is RampSIope and x is the dimensionless position along the bound-

ary. z = -1 at the counter-clockwise-most endpoint and x = 1 at the other

endpoint. RampSIope = +1 gives zero at one or the other of the endpoints.

IRampSIope I > I produces a bi-directional profile.

RelAngle : (radians)

Angle (measured counterclockwise) of the positive flow direction with re-
spect to inward-pointing boundary normal.

The total mass flow rate m through the region boundary is given by

rh = [MdotMean + MdotAmp sin(wt + Mphs)] cos(RelAngle)

where w is the circular frequency and t is time. The positive sense of rh is always

into the region. The influx temperature is determined by the region temperature

74

asspecifiedbytheRgnSpec variables T_left and T_right. If both MdotMean and

MdotAmp are zero then Manifest treats the boundary as a solid wall.
The current version of Manifest allows several different velocity profiles

across any given region boundary, but you might wonder why there is no way to
specify flow boundary conditions at individual nodes? There is a good reason

for this. In the current way of doing things, Manifest can easily reconstruct the

node boundary conditions after vertices are moved or the computational cell

count along the boundary is changed. If you were allowed to enter mass flow
conditions for individual nodes, then it would be much harder for Manifest to

figure out how to update node boundary conditions after any changes.

RgnSpec Glossary

These variables apply to the individual regions comprising the computational

domain. The interior boundaries dividing regions are not always the straight

line segments displayed by the input editor. The true boundaries will follow the
coordinate curves of the computational grid. If they wind up curved along an

interior boundary, then so will be the boundary.

cell_l :(integer)
The number of computational cells along the horizontal dimension of the

region -- the dimension not in common with other regions.

Cergun : (dimensionless)
Ergun coefficients in tensor form. For principle porosity axes aligned with

the coordinate axes of the display:

• Cergun[1.1] = first Ergun coefficient in the X-direction (horizontal).

• Cergun[2,2] = first Ergun coefficient in the Y-direction (vertical).

• Cergun[1,2] = 0.

• Cergun[2,1] = O.

The first Ergun coefficient is cl in the Darcy friction factor f of the form

Cl

where R, is the Reynolds number based on hydraulic diameter. For fibrous

materials, cx _-, 150/3 -0.6 and c2 _ 1.5/3 -0.6 where /3 is porosity -- see

reference [11]. For non-aligned principal porosity axes you will have to use

the appropriate coordinate transformation rules for tensors -- see chapter

7. This should rarely be necessary.

Csolid: (J/kg K)
Solid matrix material specific heat. Csolid = 0.0 causes the solid temper-
ature to be held constant.

75

Dhyd :(m)
Hydraulic diameter for the porous matrix. Defined as

Dhyd = 4V/S

where V is void volume and S is wetted surface area. Used for matrix heat

transfer and porous flow resistance calculations. Dhyd must be strictly

positive to avoid division by zero. For wire matrices with fiber diameter

dw and porosity/_

Dhyd = l_dw

For matrices composed of spherical particles having diameter dp

Dhyd - 3 1 -

ErgunRatio : (dimensionless)

The ratio of the second/first Ergun coefficients which is assumed to hold
for each component of the Cergun tensor. Used for a high Reynolds number

perturbation for the porous flow resistance. See variable Cergun.

FixCommonBdrys : (True or False)

Choosing True forces the coordinate curves of the curvilinear grid to follow

the straight-line boundaries of the region -- including those held in com-
mon with other regions within the interior of the computational domain.

Choosing False relaxes the constraint on common boundaries. Because it

gives the smoothest grid, the False choice is best for contiguous regions;

either empty or filled with the same material. However, the False choice

might allow a regenerator matrix to sag into or away-from an empty space.

To prevent this, choose the True option for a filled region next to an empty

neighbor. The status of a common boundary is actually determined by

the value of FixCornrnonBdrys for both adjoining regions. If either one is

True then the grid will be constrained there.

KgasMultiplier :(dimensionless)

Gas-only conductivity enhancement multiplier, defined as KgasMultiplier =

ke/k where k is the molecular gas conductivity and ke is the effective gas

conductivity. Normally KgasMultiplier = 1. Values greater than one can

be used to account for conduction-like sub-grid-scale terms in the energy

equation -- if yon know of a suitable correlation for them. See section
8.2.6.

Ksolid : (W/mK)

Matrix material solid conductivity.

Matrix : (True or False)
True if a matrix is present in the region or False if it's empty.

76

Nusselt : (dimensionless)

Nusselt number for the region. Defined as

hd
Nusselt =

k

where h is the mean film coefficient, d is the hydraulic diameter and k is

the molecular gas conductivity. Reference [8] provides a useful correlation
for Nusselt number in screens:

Nusselt = pR m

where Re is Reynold's number based on hydraulic diameter, and p and m

are defined in terms of porosity/3 by

m = 0.85- 0.43fl

p = 0.537/3; if/3 < 0.39

p = 1.54- 6.36/3+ 7.56/32; if/3 > 0.39

In terms of Stanton number St, Reynolds number Re and Prandtl number

Pr, Nusselt number is also given by

Nusselt = StP,-Re

Porosity : (dimensionless)

Void/total volume in the region. Porosity = 1.0 causes the solid tempera-
ture to be held constant.

RhoSolid : (Kg/m 3)

Solid matrix material density. RhoSolid = 0.0 causes the solid temperature
to be held constant.

T_left :(K)
Initial temperature at the left end of the region. The designation "left"

refers to the initial orientation of the display.

T_right : (K)

Initial temperature at the right end of the region. The designation "right"
refers to the initial orientation of the display.

VisMultiplier : (dimensionless)
Viscosity enhancement multiplier for the region. Defined as VisMultiplier =

Pe/# where/_ is molecular gas viscosity and/_e is effective gas viscosity. #e

replaces/_ in the viscous stress tensor. Normally VisMultiplier = 1. Values

greater than one can be used to account for viscosity-like sub-grid-scale
_erms in the momentum equation -- if you know of a suitable correlation
for them. See section 8.2.6.

VisMultiplier = 0.0 causes Manifest to ignore the viscous stress tensor

in both momentum and energy equations (but still model porous flow
resistance), thereby speeding up the computation considerably.

77

GlobSpeeGlossary

These variables apply to the computational domain as a whole.

cl_Suth : (kgl(msK°'5))
A Sutherland coefficient. Molecular viscosity p is calculated as

cl_Suth T 15

- T + sl_Suth

where T is gas temperature.

cell_2 : (integer)
The number of cells along the vertical dimension of the computational

domain -- the dimension common to all regions.

Cp : (J/kgK)
Gas specific heat at constant pressure.

¢v : (j/kg IO
Gas specific heat at constant volume.

frequency :(Hz)
Frequency of underlying flow cycle.

GasdynamicTol : (dimensionless)
RMS error tolerance for convergence of main solution. After each time

step, Manifest calculates the root mean square change of the solution
variables over exactly one cycle period. If less than GasdynamicTol then

Manifest stops. (The solution variables from the preceding cycle are in
the _MFSTEP.nnn file about to be overwritten.) The default value of

GasdynamicTol = 1.0E-4 is a reasonable place to start. You may have to
play around with this value depending on the details of your particular

problem. The dimensionless solution variables M, E and T, (see section

8.5.2) are normalized to the order of one. Velocity, on the other hand, is
normalized by the sonic velocity which means that variables G 1 and G 2
are on the order of the local Mach number.

GridTol : (dimensionless)
RMS error tolerance for convergence of dimensionless curvilinear coordi-
nate solution. GridTol = 1.0E-4 is the default value.

MaxTimeSteps : (dimensionless)
Maximum number of output time steps to be simulated. Manifest halts

execution if the solution has not converged before this.

node_T :(integer)
Number of output time steps (_MFSTEP.nnn files written) per period of

the oscillating flow cycle.

78

Prandtl: (dimensionless)

Prandtl number. Used for calculating molecular gas conductivity, k =

Cp/_/Prandtl.

pressure : (N/m 2)
Time-mean gas pressure.

sl_Suth :(K)

A Sutherland viscosity coefficient. See cl_Suth.

thk_domain : (m)

Thickness of the computational domain. The dimension normal to the

display screen. This dimension is not discretized.

TstepSubdivide : (integer)
Number of integration time steps per output time step. Integration time

step At is given by

1
-- = TstepSubdivide x node_T × frequency
At

TstepSubdivlde should normally be set to 1. Values greater than 1 are

used to reduce the integration time step without increasing the number of
_MFSTEP.nnn files written.

5.1.6 More on Curvilinear Coordinates

The curvilinear grid is normally produced as the last step of MFSETUP. This

part of the program is not interactive in any way; you just sit back and wait for

the results. Even so, there are a few things you should be aware of.
The number of nodes in the curvilinear grid is determined by the variables

Cell_2 (accessible with edit function GlobSpec) and Cell_l (accessible with edit

function RgnSpec). Cell_2 has global scope in the computational domain while

there is a Cell_l defined for each region. Actually, these variables determine

the number of computational cells -- the basic solution elements -- in the

domain. Each cell spans two coordinate curves of the display. That is, the

nodes of the grid fall at the corners, mid-points of sides and in the centers of

the computational cells.

If Cell_2 or the Cell_l's become too large, the time required to solve the

curvilinear grid will grow rapidly and, at some point, MFSETUP may even run

out of memory and crash ignobly. If this happens your only recourse is to reboot

your machine (warm boot) and try again. One might suppose that speed and
memory requirements would depend mainly on the total number of cells in the

computational domain. This is not quite true: Long and thin domains fare

better than square domains having the same number of cells. In the previous

sentence, the terms long and thin refer to the number of cells across the domain,

not the physical dimensions.

79

In some cases, part of the curvilinear grid will spill over to the exterior of

the computational domain. This can happen when the domain contains sharp

V-shaped concave corners. Manifest is currently too dumb to prevent this, or

even know when it has happened. It is up to you to spot the problem and take

corrective action. Setting the variable FixCommonBdrys to TRUE for at least

one of the regions on either side of the offending V, will constrain the grid on

the common boundary, and fix the problem.

5.1.7 Modeling Steady Flows

Occasionally, you may want to set up Manifest to model steady flow instead

of oscillating flow. Many flow maldistribution problems are just as evident in

a steady-flow situation, and Manifest usually converges to the solution faster.

The BdrySpec variable MdotMean allows you to specify a steady-flow boundary
condition.

You might wonder what to do about the GIobSpec variables frequency and
node_T which seem to be somewhat arbitrary in steady flow. Since node_T

determines the number of _MFSTEP.nnn files written to the disk, it is a good

idea to keep it small: say about node_T = 4. Then, once you have set node_T,

choose frequency to determine the time step At from the following equation

1
-- = TstepSubdivide x node_T x frequency
At

TstepSubdivide can be anything, in principle, but it is probably a good idea to

set it equal to 1 so that a _MFSTEP.nnn file is written for each integration time

step.

5.1.8 Special Effects

Some of the MFSETUP source-level variables have special values which trigger

Manifest to modify its normal simulation model.

Fixing Solid Temperatures

Setting Porosity = 1.0, RhoSolid = 0.0 or Csolid = 0.0 for a region cause the solid

temperature in that region to be held constant. This feature is useful in regions

where the solid temperature 7", is supposed to represent an isothermal beat

exchanger wall, or when the region is essentially adiabatic (in which case you
will also have to set Nusselt = 0). Fixed T0 is selected automatically whenever

the Matrix input variable is set FALSE.

Fixing Gas Temperature at Walls

A constant wall-temperature boundary condition can come in handy when mod-

eling conductive heat flux through the walls of regions. You might be interested

80

in this for gas spring loss analysis or deriving film heat transfer coefficients for

oscillating channel flow from first principles. The key idea here is that for solid

walls (not active flow inlets) Manifest sets the gas temperature at the wall equal

to T_ extrapolated to the wall. By properly initializing T_ and holding it con-

stant as explained above, you can model the normal temperature gradient at the

wall (and therefore the conductive heat flux) with any wall boundary condition

temperature you choose.

Neglecting the Viscous Stress Tensor

Setting VisMultiplier = 0.0 for a region causes the viscous stress tensor re to be

neglected (not evaluated at all) in that region for the momentum and energy
equations. You should take advantage of this feature whenever you are modeling

a porous material where the sub-grid-scale flow resistance is large compared to

the grid-scale viscous forces. The sub-grid-scale flow resistance is modeled in

the form ¢. flV in the porous momentum equation (8.59), and is completely
separate from the visous stress term.

You will probably do well to set VisMultipller = 0.0 for almost all porous

materials you are likely to model. You will notice a significant speed-up of the
solution process with this feature in effect.

Of course there are some cases where VisMultiplier should not be set to

O. These are for flow in empty manifolds or when evaluating small scale phe-
nomenon near the boundaries of a diffuse matrix -- such as jet penetration into

a matrix. In general, whenever grid-scale spatial velocity gradients are likely to

produce significant viscous forces, set VisMultiplier to a realistic value > O.

5.2 MF Reference Guide

When MF is running smoothly, all you have to do is sit back and watch. When

problems arise you might find help in this section.

5.2.1 Instability

When the arrows in the mass flux vector field run amok (grow large and ran-
domly oriented), Manifest has gone unstable. Unfortunately this is possible

even though the program uses an implicit solution method.

Instablity seems to correlate fairly well with Courant number Nc defined as

At

Ne=c_-_x

where c is the gas sonic velocity, At is the integration time step and Ax is

the grid spacing. Experience indicates that Manifest is stable up to a limiting
Courant number of about 100. This value is not exact: It can be more or

81

less depending on the size of viscous and porous damping terms as well as the

cnrviness of the curvilinear coordinate grid for a particular problem.

For a grid spacing Az = 1.0E-2 m and a sonic velocity c = 1000 m/s (helium

at 300 K), the likely not-to-exceed time step works out to

2'_crnax A x
Atm_: - _, 1.0E-3 s

C

For a 60 Hz cycle this would imply a minimum of 16 integration time steps per

cycle (node_T x "l'stepSubdivide), which is reasonable.

There is a problem with making node_T too big: The number of_MFSTEP.nnn

files that must be read by the output program increases. If you have the need

to model a low frequency cycle or a very small physical region, you may want to

model your problem as a number of separate steady-flow cases as discussed in

section 5.1.7. This is reasonable since in this sort of problem non-steady effects
are likely to be small anyway. Another alternative is to keep node_T small but

make TstepSubdivide large. This will limit the number of _MFSTFP.nnn files

produced while still giving you freedom to reduce the integration time step as
small as needed.

5.2.2 Reynolds Number Limits

Just like in real fluids, Manifest flows are characterized by Reynolds number. If

Reynolds number becomes too large, flow instabilities may develop. These are
different from the numerical instabilities mentioned above. Reynolds number

instabilities begin with gradual wave-like phenomena and gradually grow to

complete chaos. But since real fluids behave this way too, there is no need to

fix the problem. Just reduce Reynolds number. The critical Reynolds number

beyond which chaos ensues is on the order of 100 to 1000, depending on the
flow details.

Unlike real fluids though, Manifest has limits to its resolving power. Small-

scale eddies or thin wall-boundary layers are unknowable to Manifest once they

become smaller than the mesh of the computational grid. The user must be

the judge of whether or not the computational grid is fine enough to resolve the
important phenomena in the problem. Manifest is not smart enough to do this
on its own.

5.2.3 Running Out of Memory

Abnormal termination of MF accompanied by the system error message No

room in heap is the definitive symptom of running out of memory. The maxi-
mum addressable memory of 640K should be available; 512K is the minimum

recommended. Be sure that there is no superfluous memory resident software

competing for memory space. The actual memory requirement for any given

82

simulationdependsmainlyonthefinenessof thecomputationalmesh.Reduc-
ingcell_2or cel[_lfor oneor moreregionswill reducememoryneeds.Setting
VisMultiplier= 0.0 for regions containing porous materials -- as described in

section 5.1.8 -- will also help.

5.2.4 Restarting

You can halt execution of MF at any time and resume later on where you left off.

Either press the Esc key to stop after the current time step is solved or, more

drastically, re-boot your computer. There is usually a special key sequence

to perform a warm boot that is faster and less damaging than momentarily

interrupting the line power. To resume execution, just load MF as usual. The

program remembers where it left off by reading the file _MFSTATU.TXT.
The only time you will be unable to restart MF is if you run MFSETUP

again. Actually, this is not quite true: If you use MFSETUP to merely inspect

a source file without going so far as to compile or save it (menu options F2 or

F3) then you will be OK. Only when you choose menu options F2 or F3 does
MFSETUP erase the previous _MF... files.

5.2.5 Convergence

MF will keep running until the convergence criterion established by the GIobSpec
variable GasdynamicTol is met. Basically, after each output time step, Manifest

calculates the root mean square change of the solution variables over exactly

one cycle period. If less than GasdynarnicTol then Manifest stops. (See section

5.1.5.)
The only exceptions to this are if the time-out number of output time steps

(set by GlobSpec variable MaxTirneSteps) have been exceeded, or if you manually

abort the program. In either of these cases you will be warned in MFOUT that

convergence has not been attained.

Even if Manifest thinks convergence has been attained, you should still be

on guard. Some problems may require a finer GasdynamicTol than others. You

should be suspicious if an energy balance does not hold in any region of your
computational domain and reduce GasdynamicTol accordingly. Matrix solid tem-

peratures are apt to be especially slow to converge.

5.3 MFOUT Reference Guide

5.3.1 Indexing Conventions

MFOUT has an indexing system which makes it possible to refer to the various

regions, region boundaries and grid points of the computational domain. When
reading this section think of your computational domain as a chain of rectangles

strung out from left to right on the display. Even if your actual domain doesn't

83

actually look like this, it is still topologically equivalent; you simply have to

mentally stretch it into compliance. Having done this, everything else is simple.

Regions These are numbered sequentially starting at 1 for the left-most region

on the display.

Boundaries These are indexed by two numbers: first by the region containing

the boundary then clockwise by side number starting with 1 for the left-

most side. Thinking of a region as a rectangle, the left side = 1, top = 2,

right side -- 3 and bottom -- 4. Since regions share common boundaries,

side 3 of some region is the same as side 1 of the following one.

About these common boundaries. During some selection processes you will

see them displayed on the screen as straight line segments, even though,

in some cases, the true boundary, defined by the computational grid, is

curved. Rest assured that all integrals performed within regions and on

region boundaries reflect the true grid- defined boundaries.

Grid Points These are indexed by ordered pairs following the usual convention

of listing the horizontal coordinate first. Grid point (1,1) is at the lower
left corner.

5.3.2 Output Listing

Each time you run MFOUT it writes a new OUTPUT file to the disk. Any
earlier version that may have been present is erased. The things which appear

in OUTPUT are

• Date and time stamps. This is for the time when MFOUT is executing,
not when the simulation ran or when the source data file was created.

• Source data file name.

• Global input variables from GlobSpec of MFSETUP.

• Region specific input variables from RgnSpec of MFSETUP. Listed for

each region separately and indexed by the region number.

• Boundary-condition variables from BdrySpec of MFSETUP. Listed only

for active inlets (boundaries where either MdotAmp or MdotMean are,not

zero). Indexed by region and side numbers.

• Run status variables StepNumber and RmsChange. These give the last

time step simulated and the RMS solution change from the previous cycle

(see (;asdynamicTol in section 5.1.5).

• A log of your interactive output session. This is text format only. No

graphics are included.

84

TheGlobSpec,RgnSpecandBdrySpec listings are in the same format as they

appear in the MFSETUP display: in a hierarchical list with variables of similar

scope indented the same amount.
OUTPUT is a standard ASCII file and you can examine it with any text

editor or most word processors. You can also print it using the DOS PRINT or

TYPE>PRN commands. If you want, you can even edit it before printing.

5.3.3 Interactive Options

After reading and processing its input files, MFOUT enters interactive output

mode. Then, you select interactive output options by point-and-clicking the

appropriate activity box along the left edge of the screen. In this respect,
MFOUT is similar to MFSETUP.

Moving the Cursor

Depending on its location, the cursor is represented on the display by either

a "+" or an arrow. Normally the cursor tracks the motion of the mouse as

you move it. If you don't have a mouse, the keyboard arrow keys can also be
used to move the cursor. The arrow keys move the cursor about one pixel in

the indicated direction. Holding a shift key down while pressing an arrow key

increases the size of the step.

Mouse Button Substitutes

The right and left mouse buttons are needed frequently. If you have no mouse,
use the F9 key as a substitute for the left button and the F10 key as a substitute

for the right button.

ContPlot

Use this function to display contour plots of

• gas pressure

• gas temperature

• matrix solid temperature

After you select ContPlot you are presented with a sub-menu of the above

options. The up and down arrow keys scroll through the menu and pressing

return selects the highlighted option.
The initial contour plot is drawn for time step 0 with the default contour

spacing. The right and left arrow keys increment or decrement the time-step

number by one. The gray "+" or "-" keys increase or decrease the contour

spacing.

85

VecPlot

Use this function to display vector plots of mass flux per unit total area. There

are no other options at this time.
The initial vector plot is drawn for time step 0 with the default arrow length.

The right and left arrow keys increment or decrement the time-step number by

one. The gray "+" or "-" keys increase or decrease the arrow lengths.

EnergyInt

Use this function to display integrals within regions of

• Porous Dissipation

• Viscous Dissipation

• Gas-to-Solid Heat Transfer

Technically speaking each of these quantities has units of work (Joules), but in

accordance with engineering conventions they are all multiplied by frequency to

give mean effective powers expressed in Watts.
After you select Fnergylnt you are presented with a sub-menu of the above

options. The up and down arrow keys scroll through the menu and pressing

return selects the highlighted option.

The initial display shows an outline of the computational domain with the
individual quadrilateral regions comprising it numbered sequentially starting
from 1. The bottom of the display window gives an initial heading -- depend-

ing on the sub-menu option selected -- of something like:

Region #, Porous Dissipation (W)

Point-and-clicking the mouse inside a region of the computational domain pro-

duces a line of numerical output at the bottom of the display window. This

output is simultaneously copied to the OUTPUT file.

Porous dissipation is based on the integral of

w< = -/ vPj. v

where fl is porosity, VP! is the force per unit void volume due to sub-grid-scale
porous-material friction and V is void-average velocity. W! is the dimensionless

pumping power per unit total volume. VP! is given by

vP! = -¢. v

where _b is the flow resistance tensor described in section 8.2.3.

86

Viscousdissipation isbasedon the integral of the dissipative part of the
stress work term

Wd = V" ('r,"

occurring in the porous-material thermal energy equation (8.60). "re is the
apparent viscous stress tensor (see section 8.2.6). In tensor notation, the dissi-

pative part of Wd is
cOUk

this is often called the dissipation function which represents the mechanical

energy per unit total volume dissipated into thermal energy.

Gas-to-solid heat transfer is based on the integral of

Qh =

where _ is porosity and Q is the heat flux per unit void volume transferred

between the gas and the solid matrix material.

FluxInt

Use this function to display integrals across boundaries of

• Advected Energy Flux

• Conductive Heat Flux

Technically speaking each of these quantities has units of work (Joules), but in
accordance with engineering conventions they are all multiplied by frequency to

give mean effective powers expressed in Watts.

After you select Fluxlnt you are presented with a sub-menu of the above

options. The up and down arrow keys scroll through the menu and pressing

return selects the highlighted option.
The initial display shows an outline of the computational domain with the

individual quadrilateral regions comprising it numbered sequentially starting

from 1. The bottom of the display window gives an initial heading -- depend-

ing on the sub-menu option selected -- of something like:

Region #, Side #, _et advected energy flux through side (W)

Point-and-clicking the mouse on a region side produces a line of numerical out-

put at the bottom of the display window. This output is simultaneously copied

to the OUTPUT file. For interior sides, the flux integral is performed along the

actual region boundary defined by the curvilinear coordinate grid.

87

Advected energy flux is based on the integral of the advected terms ap-

pearing in the porous-material thermal energy equation (8.60)

Qe =]_pev + Pf_V - re • _V

where fl is porosity, p is dimensionless gas density, e is dimensionless mass

specific total gas energy, V is void-average velocity, P is pressure, and a', is the

apparent viscous stress tensor (see section 8.2.6). q_ is comprised of enthalpy

flux, kinetic energy flux and viscous stress-work flux. Integrated over a cycle,

the kinetic energy term will presumably cancel (for sinusoidal V) leaving only

enthalpy and viscous stress-work flux.

Conductive heat flux is based on the integral of

Qk = _qe

where/_ is porosity and qt is the apparent void-average heat flux vector which

appears in the porous-material thermal energy equation (8.60)

Fourier

Use this function to display Fourier coefficients at computational grid points of

• Pressure

• Gas Temperature

• Matrix Solid Temperature

• rho V_I

• rho V_2

The quantities (rho V_I) and (rho V_2) are the rectangular components (hori-

zontal and vertical) of the mass flux per unit total area vector G defined as

G =/_pV

where/_ is porosity, p is dimensionless gas density and V is void-average velocity.

After you select Fourier you are presented with a sub-menu of the above

options. The up and down arrow keys scroll through the menu and pressing
return selects the highlighted option.

The initial display shows the computational grid with individual nodes lying
at the intersections of the coordinate curves. The bottom of the display window

gives an initial heading -- depending on the sub-menu option selected -- of

something like:

I1, I2, rho V_I: mean (kg/s m2), ampl (kg/s m2), phase (rad)

88

Point-and-cricking the mouse at a node produces a line of numerical output
at the bottom of the display window. This output is simultaneously copied
to the OUTPUT file. I1 and 12 are the coordinates of the node, mean is the

cycle-average value and arnpl and phase are the amplitude and phase of the first
harmonic.

Scale

Use this function to scale the computational domain relative to its display win-
dow. The dimensions set here carry over to all of the other interactive func-

tions of MFOUT. This function works identically to the scaling function in
MFSETUP.

Two keyboard commands are available:

• Gray -1-: Increases the apparent size of the computational domain.

• Gray -: Decreases the apparent size of the computational domain.

In addition, clicking either mouse button when the cursor is in

the display window, re-positions the display window so it is centered at the
cursor location.

Done

Use this function to exit MFOUT and return to DOS.

5.3.4 Graphics Hard Copy

MFOUT has no internal commands for copying graphics images to a printer.
Instead, you will have to load some form of memory resident screen printing

utility prior to running MFOUT and activate it when needed -- generally by

pressing a hot key combination such as Shft-PrtSc. Execution of MFOUT is

temporarily interrupted while the screen dump is in process. This may take
several minutes, depending on the resolution of your display screen and the

speed of data transfer.

The chief problem will be finding a screen-dump utility that works with

your particular display adapter and printer. See chapter 3 for some guidance

here. The PRTSCRN.EXE program bundled with the Manifest software may

work with IBM-compatible dot-matrix printers. More sophisticated systems will

require more powerful software.

Keep in mind that the display colors will affect the printer image. You may

have to set the display background color to black by making BaekgroundColNum
= 0 in the attribute file DSPLYATR.TX-r. See chapter 3 for more details on how
to do this.

89

Chapter 6

Mainframe Manifest

PC's are limited in speed and memory, and this is especially noticeable in Man-

ifest's number crunching MF module. So it is natural to want to run at least

this part of Manifest on a bigger computer. Mainframe manifest makes this

possible. The input and output modules MFSETUP and MFOUT run on a PC

exactly as before, except now one has the option of running the MF module on

a supercomputer.
The mainframe version of Manifest's MF module is written in a standard

dialect of Pascal and can probably be installed on virtually any computer system

by re-compiling. This chapter documents the version installed at NASA Lewis

on the VM/Cray system residing there. (VM stands for the virtual-machine
IBM mainframe system that serves as front-end to the Cray X-MP.)

As in the MS-DOS environment, MFSETUP, MF and MFOUT communicate

with each other by disk files. This requires that certain files be sent to VM before
MF is run and be sent back again when finished. The details of this process

depend upon how one's PC is connected to the host mainframe. Users within
NASA Lewis can use the Lewis local network to transfer files. More remote

users, connected via modem and phone lines, can use the CMS KERMIT file

transfer program as long as their PC communications software supports it.
In addition to the files required for the PC version of Manifest, mentioned

in chapter 3, the following files are vital for mainframe Manifest:

MANIFEST PAS

MFBATCH DAT

MFRECV EXEC
UPCRAY.EXE

DOWN C RAY. EXE

Source code for mainframe MF module

Job submittal data file

Job receiving command file

PC input file conversion program

PC output file conversion program

The first three file names are in VM format since they normally reside there.

The last two file names are in MS-DOS format since they stay on your PC. The

9O

Pascal source code is stored under the name MANIFEST PAS to avoid confusion

with the PC version MF.PAS.

6.1 Running a Job

Regardless of the PC-to-Mainframe link, the process of running MF on the Cray
can be blocked out as follows:

1.

2.

3.

Run PC program MFSETUP as usual to produce input files.

Run PC program UPCRAY to initialize Cray-specific files.

Logon to VM and upload the files: _MF1.TXT, _MF2.TXT,
_M FSTATU.TXT and _MFSTEP.ALL.

4. Submit the batch-mode job to the Cray by entering the VM command:
CRSUBMIT MFBATCH DAT.

5. Wait until output files appear in the reader signifying the job is done.

6. Type: MFRECV to receive all the reader files to the VM disk.

7. Download to your PC the files: _MFSTATU TXT, _MFSTEP ALL, _MF1
TXT and _MF2 TXT.

8. Run PC program DOWNCRAY to break up _MFSTEP.ALL output file

into individual files for each time step.

9. Run PC program MFOUT as usual to examine output.

To run a completely new job (new input files compiled by MFSETUP) you must
repeat the above procedure in its entirety. To restart a job from the point where

it last left off, just jump into the procedure at step 4.

What follows in this section is further elaboration on some of the steps in

the submittal procedure.

Step 2. UPCRAY initializes the files _MFSTATU.TXT and _MFSTEP.AL/.

These files are mainly output flies but are also read as input to remind ME

where it left off in case it is restarting. The initial values placed in these files

by UPCRAY tell MF to start from scratch.

A better way to tell MF to start from scratch would be to just not write the

files in the first place. Then MF could sense that the files were not present and

default to its start-up mode. But Cray Pascal does support checking to see if a

file exists before reading it.

Step 3. With luck, uploading files can be done using the wildcard specification
_MF*.*, depending on your file-transfer method.

91

Step 4. MFBATCH DAT is a JCL file that causes the following to happen

when executed in the Cray batch environment:

• Sets the job time limit (number after -1T command, seconds).

• Fetches the _MF... input files from VM.

• Links to the appropriate Cray directory containing manifest.o, the com-

piled MF object code.

• Loads and runs the program.

• Disposes the _MF... output files to the VM reader.

See section 6.2 if MANIFEST PAS has not yet been compiled on the Cray.

Step 5. Since MF executes in batch mode, you do not have to be logged onto
VM for it to execute. At the same time, you must anticipate the possibility that

it will run out of time before achieving convergence. If this happens, you will not

get any output back. To avoid this you can set the input variable MaxTimeSteps
to an appropriately small number or set the time limit in MFBATCH DAT to

an appropriately big number. When MF completes MaxTimeSteps output time

steps it will stop. MF is designed to restart where it left off the next time it is

submitted. It will then run until another block of MaxTimeSteps is completed,

or until convergence is achieved.

Step 6. MFRECV EXEC is a VM command file which receives all the files in

the reader using the RECEIVE command with the (REPLACE option. If the
reader was not previously empty, MFRECV will read those files as well.

Assuming the reader was previously empty, the first reader file, MANIFEST

CONSOLE, contains human-interest output that would have been displayed on

the console had you run the program interactively. Normally, you can ignore

this file. If you have trouble, though, you might want to look here for a clue as

to what went wrong.

The next two files, _MF1.TXT and _MF2.TXT, are input-only files that are

returned from the Cray system unchanged. That is, they are the same files as

those fetched from VM in step 4. They are sent back to the reader for the sake of

completeness in case the corresponding VM versions have since been modified.

Program MFOUT reads these two files as well as the remaining output files
so, needless to say, it will get confused unless they all correspond to the same

problem.

The next three files, _MFSTATU.TXT, _MFSTEP.ALL and _MFSTEP.DV (op-

tional), are files containing information about the most recently completed time

step, the solved variables themselves and the solution-variable increments for the

92

mostrecenttimestep.MFbothreads from and writes to these files. Output pro-

grain MFOUT reads _MFSTATU.TXT and _MFSTEP.ALL. The file _MFSTEP.DV

is only needed for restarting MF and is not present in all cases.

The Cray system, of its own accord, returns to the reader a file named

something like name OUTPUT which contains messages from UNICOS. The
name part is the name of the virtual machine associated with the job (padded

with underscores to eight characters). Here you can find Cray job accounting

information -- like CPU time, etc. -- and perhaps other information that may

be of interest, especially if your job bombed.

Step 7. You do not actually have to download the files _MF1.TXT or _MF2.TXT

unless you have changed them on your PC while the Cray job was running. MF

only reads from these files.

Step 8. To accommodate the limitations of Cray Pascal and to simplify the

JCL, the Cray version of MF reads and writes its solution values to one big file

_MFSTEP.AI_L containing values for all points of the computational grid, for all

time steps computed so-far. The MS-DOS version, on the other hand, breaks

its output down into separate files for each time step _MFSTEP.nnn, where nnn

is the time step number. Program DOWNCRAY converts the _MFSTEP.A[I_

file into separate _MFSTEP.nnn files.

6.2 The Source Code

The version of MANIFEST PAS currently residing on the VM system has ap-

propriate JCL statements included at the beginning and end of the file so that

it may be submitted to the Cray for compilation by entering the VM com-

mand: CRSUBMIT MANIFEST PAS. The compiled object code is automati-

cally stored in a Cray subdirectory as file manifest.o.
Needless to say, the Pascal source code for the MS-DOS version of the MF

module and the Cray version differ substantially. There are two reasons for this:

1. Cray Pascal does not support nearly as many extensions to the ISO Level 1

Pascal standard as Microsoft Pascal does, and

2. The VM/Cray operating environment does not support graphics.

The remainder of this section documents some of the major surgery done on the

PC MF module in order to produce a Cray version.

6.2.1 Units

A unit is a separately compiled block of Pascal source code that allows big pro-

grams -- like Manifest -- to be separated into logically distinct chunks. Units

93

t '2

export types, variables and procedures, to be used by other units or the main

program, in a structured way. The Microsoft Pascal version of Manifest relies

heavily on units. But, alas, Cray Pascal does not support units. Separately

compiled modules are as close as it comes, but modules are essentially unstruc-

tured and are not allowed to import or export variables or type declarations

from other modules. The result of all this is that the Cray version MF is one

long program.

6.2.2 Graphics

During execution, the PC version of MF displays a graphics image of the most-

recently-completed solution vector field. This feature is absent in the Cray
version.

6.2.3 Dynamic Arrays

One of the very nice things about Microsoft Pascal is that it allows you to es-

tablish upper bounds and allocate memory for arrays at run-time. You do not

have to allocate memory in advance to hold the largest possible array. Unfor-

tunately, Cray Pascal does not support this feature, with the result that the
maximum dimensions of the computational array and the maximum number of

output time steps per cycle are specified as constants at compile time (constants:

MaxNode_l, MaxNode_2, and MaxNode_T). If you change these constants you

have to re-compile the program. You may bump into these limits, in the form

of an error message followed by an abrupt halt, if you become too bold in your

problem design.

6.2.4 String Handling

Microsoft Pascal supports string types of fixed and variable length and a large
number of special functions for dealing with them. Cray Pascal supports only

fixed-length strings. This fact required several minor but annoying changes in

procedures dealing with reading variable names during disk I/O or passing file

names as arguments.

6.2.5 File I/O

Microsoft Pascal has a way for you to check to see if a file is present before trying
to read it. This makes it possible for the PC version of MF to determine whether

it is starting from scratch or restarting, merely by checking for the existence of

certain input files. Cray Pascal does not support this sort of thing, which

explains some of the added complication of the submittal procedure (programs

UPCRAY and DOWNCRAY) in the previous section.

94

6.2.6 Restarting

The PC version of MF is somewhat interactive; you can stop it at any time by

pressing the escape key, or by re-booting the system The next time MF runs it

will resume the simulation where it left off (unless you create new input files with
MFSETUP). This is possible because MF is designed to write a permanent disk

file of solution variables _MFSTEP.nnn for each time step immediately after it is

solved. The idea is that these files are cyclically overwritten so that the collective

set of them contains the solution for the most recently simulated cycle. The files

-MFSTATU.TXT and _MFSTEP.DV are also overwritten after each time step and

contain information about the status of the solution, and the solution-variable

increments dV for the current time step. This information is needed to restart

the simulation in case of MF is stopped for some reason. (Actually, _M FSTEP. DV

only written if input variable TstepSubdivide > 1 because, otherwise, dV is

available by differencing the two most recent _MFSTEP.nnn files.)
The Cray version attempts to do all this as much as possible. It actually

maintains the equivalent of the _MFSTEP.nnn files -- but in RAM, not on the

disk. Only at the very beginning or end does it read/write them from/to the

permanent disk file _MFSTEP.ALL. I decided to do it this way because I didn't

want to deal with the JCL required to reference files of unknown number having
incremented extension identifiers. Files _MFSTATU.TXT and _MFSTEP.DV are

overwritten each time step as before. Restarting is still possible, but the ways

in which the program can halt gracefully are more limited. Pressing the escape

key or re-booting are out. The only alternatives are to achieve convergence or to

exceed the maximum-time-step limit specified by input variable MaxTimeSteps.
If the system times you out, you lose your output files.

95

Part III

Theory

96

Chapter 7

Coordinate Transformation

Theory

Manifest uses two-dimensional boundary-fitted coordinates in order to solve gen-

eral stifling flow problems ill non-rectangular regions. This chapter develops the

foundation for this sort of thing from pretty-nearly first principles. The reader

familiar with coordinate transformations can skip over this chapter, returning
to it later on for reference if needed.

Since this subject requires a lot of formulas involving coordinates, the sum-

mation convention from tensor analysis is used. Whenever two like in-

dices occur in a formula they should be summed from 1 to 3 o(or 1 to 2 in two-

dimensional formulations). For example the expression _ = _ ou, should beOy i Oxt

read of _ V.3 o_Z.2u_t
Ox, -- £-.,j=l Oyj Oxi"

Also, please note that although most results are derived in three-dimensions,

application to two dimensions is straight forward -- simply sum indices from 1

to 2 instead of 1 to 3 or omit quantities corresponding to the third dimension.

7.1 Coordinate Systems

First, a word about coordinate systems in Euclidian three-dimensional space,

also known as E 3. Since we all live in E 3 (or a close approximation) we can

relate to it pretty well. Its only when we think about coordinate systems for E 3

that the trouble begins. In the familiar rectangular system (xl, x2, x3) are the
position coordinates and t is the time coordinate. In the unfamiliar curvilinear

coordinates I will speak of the same position and time in terms of coordinates

(Yl, Y_, Y3) and r where.

Yi = yi(xl, x2, xa,t) (7.1)

97

for i = 1...3, and

_-: t (7.2)
Distinguishing between t and r will help us keep things straight later on when

it is not otherwise clear whether I'm talking about a function of rectangular or
curvilinear coordinates.

I make no assumptions about the form of equations (7.1) other than that

they are smooth enough so one can evaluate partial derivatives and that at any
fixed time the inverse transformation exists

• , = _,(v,, v2,v3,_') (7.3)

at least in the sub-region of E 3 we are considering.
It will be convenient to define the transformation matrices

and

091 09x Oyl

Oy_ 49y:_ 8y_

OVa OVa Oya

and the so-called Jacobian of the coordinate transformation

(7.4)

(75)

J = det(Yx) (7.6)

where det denotes the determinant function.

Now it turns out that Xy and Yx are inverses but the reason why is based
on an argument involving functions, coordinate representations and the chain

rule. Functions are so important to understanding everything that follows that

I will take a slight detour here to talk about them in their own section. If you

feel comfortable with functions skip over the next section and read it later on

if you start to get confused.

7.2 Function Representations and the Chain

Rule

A function f defined on E 3 is an abstract concept independent of coordinate

systems. To any point p (also coordinate independent) in E 3, f assigns a

value f(p). The value f(p) may be a real number or another point in E 3 --
it doesn't matter. So that we can do useful work with them, we talk about

the representations of functions in a particular coordinate system. For exam-

ple, in terms of rectangular coordinates (xt,z2, x3) we might represent f as
f(xl, x2, x3) = xl + x2 + x3 which tells us everything we need to know about f.

98

The problem comes when we have two coordinate systems around. In rect-

angular coordinates we should represent f by a notation like f,(xl, x2, x3) and

in curvilinear coordinates we should represent f by fu(Yl,Y2,Y3) because the

algebraic form of f, and fy are usually completely different. Most authors (in-

cluding this one) ignore this distinction most of the time because it would only
add to the confusion of the notation. However in this section I will maintain

the distinction in order to talk about the chain rule.

Let (Xh Xl, x3) be rectangular coordinates of a variable point in E 3 and

(Yl, y2, y3) be the coordinates of the same point in curvilinear coordinates. Then

by definition

fx(Xl,XI,X3) = h(yl(xI,.T2, X3,_),y2(xI,X2, x3, t),y3(xI,.T2, X3,_)) (7.7)

and the chain rule for partial derivatives tells us that (summation convention)

of. _ of_ o___y (7.8)
Oxi Oy_ Ozi

The chain rule will be used a lot in subsequent sections.
From now on I will drop the x and y subscripts on f and we can keep things

straight according to whether, in the context of a formula, f is represented in

rectangular or curvilinear coordinates. This is almost always obvious except
when we begin to think of functions of time as well as position. In this case, if

t were used to denote time in both coordinate systems, time partial derivatives

would get confusing without the z and y subscripts on f. This is the reason

that time is referred to by t and r in rectangular and curvilinear coordinates
respectively.

7.3 Important Properties of the Transforma-
tion Matrices

The fact that Xy and Yx are inverses follows immediately from the chain rule.
Note that for any function f on E 3, the chain rule given above in equation (7.8)
can be rewritten as

(
using the customary notation

in reverse gives

(

= Yx (7.9)

for matrix multiplication. Applying the chain rule

-_ = Xy _ (7.10)

99

Applyingtheprecedingresultsin succession shows that

Oya

and since f is arbitrary

(7.11)

Xy •Yx = I (7.12)

where I is the identity matrix. Since Xy and Yx are inverses, it immediately
follows from the usual rules on determinants that

det(Xy) = 1/J (7.13)

Later on, I will need to express the 0u,0_s in terms of the _ s. Writing
equation (7.12) columnwise gives

Oxt

Xy o__ =ei (7.14)
0_2
o__
Oz_

where _j is the column vector with 1 in the jth index and 0 in all other indices.
Equation (7.14) is a linear system whose solution is given by Cramer's rule as

_ = Jdet(Xyl{) (7.1S)
0xi

where Xyl_ is the matrix obtained by replacing the i th column of Xy with _j.
For example

Oyl Oyl

Xyt_= _ 0 m (7.I6/
Oy_

_ 0 _
093 OVa

and so forth. Although not especially simple, equation (7.15) does give _ in
Ox _

terms of the _ s.

7.4 Basis Vectors

By definition, the position vector r in E 3 is represented as a function of rectan-

gular coordinates as

r(xl, x2, x3) = xiei (7.17)

where ei are the mutually-perpendicular unit basis vectors for rectangular co-
ordinates with which we are all familiar. Note that

Or

ei- _9xi (7.18)

100

Accordingto coordinatetransformation(7.3)onecanalsorepresentr asa
functionof curvilinearcoordinatesr(yl, Y2, Y3, r) and define a new set of basis

vectors by
Or

gj = _ (7.19)

This time the gj basis vectors depend on position and time and are not nec-
essarily mutually perpendicular or of unit length. It is customary to think of

the gj as attached to the point of study r rather than the origin of the coordi-
nate system. Then the vector gj is tangent to the yj coordinate curve passing

through r.

There is an important relationship between the gj basis vectors and the
normals to coordinate surfaces yi = constant. The vectors g_ and g3, for

example, are tangent to the surface Yl = constant since both the y2 and Y3
coordinate curves lie in this surface. Therefore g2 and g3 are perpendicular to

the surface normal to Yl = constant -- that is, to the gradient of Yl- Here one

thinks of yl as a scalar function on E 3. This result holds in general as can be

seen from a little algebra. In rectangular coordinates the gradient of Yi has the

simple representation

(7.2o)
cOyi

Vyl = -_xke,

_r _ or
But from the chain rule, the vector gj = oy---7- or---_0u, or

Oxt

gj = _y/e, (7.21)

a__ a__ eProm (7.20) and (7.21), the dot product Vyi .gj = axk au, k .e, = o_k _-_iSm =

o_ _ which is just a component in the product matrix Xy - Yx. Using the
Oxk aid '

fact that Yx and Xy are inverses

Vyi . gj = _fij (7.22)

wherei_ii is the Kronecker delta (&j = 1 ifi = j or 0 ifi # j). Note that

whereas (7.22) implies that Vyi and gj are perpendicular for i # j it does not

imply that they are parallel for i = j (neither Vyi nor gj are necessarily unit

vectors). The sets of vectors Vyi and gj are sometimes called reciprocal bases
because of relation (7.22).

7.5 Vector Fields

A vector field is a vector valued function on E a. For example, the velocity of a

fluid stream is a vector field. In this section r will denote the position vector in

E3and A = A(r) will denote a vector field. The mathematics of vector fields in

101

curvilinear coordinates is covered in any textbook on vector analysis -- see for

example Newell [12].

In rectangular coordinates, when we represent a vector field A by (A1, A2, As)

we mean by definition

A = Aiei (7.23)

where Ai are scalar functions on E s. In curvilinear coordinates I will represent

A in terms of components (A 1, A 2, A z) which will mean by definition

A = AJgj (7.24)

where, again, the AJ are scalar functions. The A j components are called con-

travariant components by some authors, but other authors use the term con-

travariant to mean vectors in terms of a reciprocal basis. To avoid confusion

I shall avoid the term contravariant. I use the superscript index notation for

curvilinear components to avoid having to define new symbols every time I wish

to talk about the curvilinear components of a vector.

7.5.1 Transformation Rules

Transforming (A1, A2,As) components to (A:, A 2, A 3) components and vice-

versa is relatively easy. Start with the representation Aiei = Ai_ in rectan-
A or ___tgular coordinates. Using the chain rule, Ai_ = ib'_j 0z,- But by definition,

A=AJ or
_j-. Therefore, for any vector field A

A j = Ai _ (7.25)
cgzi

And likewise, it is easy to show that

Ai = A j ax---'si (7.26)
0yj

7.5.2 The Velocity Field

A vector field of central importance is the flow velocity field V. I will use ui

for the components of V in rectangular coordinates and uJ for the components

in curvilinear coordinates. Then the ui and the uJ are related by (7.25) and

(7.26).

7.6 Tensor Fields

A tensor field is a tensor valued function on E 3. Like vectors, tensors are under-

stood to exist independently of coordinate systems although they are ultimately

used via their coordinate representations in terms of matrix notation. In fact,

102

I will use the matrix representation of a tensor in rectangular coordinates as

its basic definition. There are lots of ways to define and use tensors -- see for

example Borisenko and Tarapov [5].
Let A and B be two vector fields

tations (A1, A2, A3) and (B1, B2, B3).
defined by the matrix representation

AtB1
AB = A2B1

AaB1

having rectangular coordinate represen-

Then the vector product AB is a tensor

AIB2 A1B3)
A2B2 A2B3

A3B_ AaBa
(7.27)

This type of vector product was historically known as a dyad. Note that AB

BA in general. I define a general tensor field T in rectangular coordinates by
the sum

T = Tijeiej (7.28)

for arbitrary components _j, or equivalently

(T1, T1, T13)
T= T2_ T2_ 723 (7.29)

T31 T32 T3z

In terms of this representation, tensor operations are formally equivalent to

matrix operations -- although only in rectangular coordinate systems. It is

through operations on tensors -- yielding vectors or scalars -- that we begin to
understand what tensors are.

For example, the product of a tensor field T and a vector field A yields a

vector field T • A defined by the following representation in rectangular coordi-
nates

T • A = TijAie i (7.30)

T • A is just the matrix product of T with the column vector A.
(0 0 8 _

The _ operator x_-_l, 0_-_, 0--_3J can also operate on tensors. For example,
the divergence of a tensor field T yields a vector field V • T defined by the
following representation in rectangular coordinates

, , " T2i e i = 0T/J e" (7.31)
V'T:(0"_I 0"x20x3 T3j Ozi .7

7.6.1 Transformation Rules

A tensor field T = Tijeiej in rectangular coordinates can also be represented

in terms of curvilinear coordinates by components T kt defined by

T = Tktgkgl (7.32)

103

TransformingTij components to T kl components and vice-versa is done

analogously to transformations of vector components. Start with the repre-

sentation T = T, jeiej = Tij or or in rectangular coordinates. Using the/)act /)x_

chain rule, T,.. or or = 7_j _ _ o1"1"./)___r_.r= T.. _ _ But by definition,'3 /)_¢i /)zj Oxj _dk /)Yl s.r /)aci Ox'j _a6_"

T = T_lg_gt. Therefore, for any tensor field T

Tkt = TO 0yk 0y_ (7.33)
0_i _Xj

And likewise, it is easy to show that

7_j = T _'t '_'_ Ox----L (7.34)
ay_(J_k

In general, matrix algebra does not work for tensor operations in curvilinear
coordinates. For example, consider the tensor-vector product T • A defined in

rectangular coordinates by (7.30). Using transformation equations (7.26) and

(7.34), 7_jAjel = T }' -_ _A" -_'ei = Tk'(-_ _)A'_(0_ei) =

Tklgt.gnAngk. Only ifg_.g, = $_n will T • A reduce toTktAtgk. That is, matrix

algebra will work only if the curvilinear basis vectors form an orthonormal set.

Subsequent sections will derive transformation rules for some important vector

and tensor operations in curvilinear coordinates.

7.7 Transforming the Divergence of a Vector

Field

Let A be a vector field with coordinates (A1, A2, Aa) in rectangular coordinates

and (A 1, A_,A a) in curvilinear coordinates. Using the definition of the diver-

gence in rectangular coordinates, V. A = _x." Writing Ai in terms of curvilinear
coordinates using transformation rule (7.26 / gives

and using the chain rule

Now replace
(7.15) to obtain'

(7.35)

Oy_ c9V. A - c_xi c_y_ (Aj) (7.86)

with its equivalent in terms of curvilinear coordinates using

V- A = J det(Xyli_) 0 (A _ 0x,) (7.37)
cOyk cOyj

104

Usingtileproductrulein theformu dv = d(uv) - v du this can be expanded to

(00__ _ Oa:i.t,vj Oxi 0)V. A = d (det(Xyli)Z-z-A') - A _ ----(det(Xy]_)
\ yk Oyj Oyk

(7.38)

Now the second term in the large brackets drops out, since with a good deal of

algebra 0y--_-(det(Xy lik)) can be shown to equal zero. The first term simplifies by

noting that dettX Ik_O-_AJ i ojv__o____,.M = _A _YDi)ou, = 7o_. or,'" = ½6J kAy - . The final result
is

V.A= Jo-_k(jA') (7.39)

7.8 Transforming the Divergence of a Tensor

Field

Let T be a tensor field with components Tq in rectangular coordinates and T kt in

curvilinear coordinates. In terms of its rectangular components, the divergence
of T was defined earlier by equation (7.31). Note that the factor OT., appearing

Oxs

on the right side of (7.31) can be written in rectangular coordinates as the vector

divergence V • (T U, T2j, T3_) which, according to (7.39) and (7.25) is equal to
jo.___(LT..2u_ It follows then that

Oyk t, 3 t30xi]"

c9 1 Oyk)e_V.T : J_(_T,j_7, ' (7.40)

Now since ej is constant it can be brought into the parenthesis. But ej or= 0xj--_ ----

0__ or _ so that
Oxj Oyl = Ozj gl'

. 0 ,1T. cOyt Oytg,) (7.41)
V. T- J-_y;y (-_ O-_xi cOxj

And using the transformation rule (7.33), the final result is

V. T= J_--_k(jTktgt) (7.42)

7.9 Transforming Terms of the Form _t

This is the first section in which the time-dependence of the basic transformation

equations (7.1) is explicitly important. All the previous results are valid for time-
dependent transformations; the time terms just dropped out so they weren't

emphasized.

105

Let f represent a scalar- or vector-valued function on E s with representa-

tions f(zl, z_, za, t) in rectangular coordinates and f(Yl, V2, Y3, r) in curvilinear

coordinates. Then, using the chain rule, __Lcan be transformed to

Of Of O.___fcOyj (7.43)
cOt - Or + cOyj Ot

Note that if the coordinate transformation (7.1) is time-independent then D_z
0t ----

0 and o_2_= o_Z
at Or "

For time-dependent transformations one can pu (7.43) into strong conserva-

tive form as follows. The first task is to transform _ to curvilinear coordinates.

Using the chain rule in the form _ = 0__ + noting that _ = 0 (Vj is
Ot 0_: , Or '

not a function of T) and solving one obtains

cOyj = _Oyj coxi (7.44)
Ot coxi Or

Here one looks at yj alternately as a function of curvilinear and rectangular

coordinates. If you're confused at this point try re-reading section 7.2. Using
(7.15) one can substitute for 0_y_tgiving

Oxi

j cozi
CO'J-& J det(Xy l,)-87 (7.45)

Substituting this into (7.43) gives

(Of d[j Of - det(Xy j" Ozi cOf,-_ = _rr i)'_r _-yj] (7.46)

1-°-I- _(f /J)- f o_(1/J)To put this into strong conservative form, note that _ 0r =
which is obvious, and

Oyj cOY.i

S (a,__(det(Xy]¢))+det(Xy j. cO:_x, \

= O-'-_-(det(Xyl{)_f)-f_---r (1/J)cgyj

which isn't obvious at all and requires a great deal of algebra to verify. Putting
all this together gives

. Ozl f'_1 Of CO cO det(Xyl_)_-- r) (7.47): ot - o,-(fla) -

And if we are willing to mix coordinates, (7.45) can be re-introduced into (7.47)
giving

l COf CO i9 (j_t)J _ - Or (f/J) + _ f (7.48)

106

7.10 Integrals in Curvilinear Coordinates

After solving a gasdynamic problem in curvilinear coordinates one is generally

interested in quantities such as total flux of energy across a particular boundary

or net change of mass in some region. These quantities require numerical surface

or volume integrals respectively. Since the boundary of the solution region is, by

design, generally comprised of curvilinear coordinate surfaces (Yk = constant) it

will be most natural to perform these integrals in curvilinear coordinates. Here

are some results that will help out.

7.10.1 Volume Integrals

Volume integrals in curvilinear coordinates are covered in any advanced calculus

textbook -- see for example Taylor [16]. Since the following result is so well

documented elsewhere, I'll just quote it for future reference. Let T_ denote some
physical region in E 3 and f a function defined on 7_. Then

/ / dv. = 1-_l f dvv (7.49)

where dvx = dzldx2dx3 is the volume element in rectangular coordinates,

d% = dyldy2dy3 is the volume element in curvilinear coordinates and J is

the transformation Jacobian defined by (7.6).

7.10.2 Integrals of Flux Across Boundaries

Surface integrals in curvilinear coordinates are a lot messier than volume inte-

grals except in the special case where the boundary B of region 7_ is comprised

of curvilinear coordinate surfaces (y_ = constant). But, after all, this is the

point of boundary-fitted coordinates in the first place, so there is no problem
with this restriction.

In coordinate-free form, the flux-integral of a vector field A across boundary
B is defined as

(A. n)ds

where n is the outward pointing unit normal to the surface and ds denotes the

surface-area element. Using the divergence theorem and the above result for

the transformation of volume integrals fn(A. n)ds = f_(V. A) dv_ =

f_ 17i(V.1 A) d%. Then equation (7.39) for the divergence in curvilinear coor-
dinates gives the intermediate result

0 1 k
jfB (A "n)ds = f "_y_ (-_ A) dv, (7.50,

Now assume the boundary B is made up of curvilinear coordinates surfaces.

Define a positive Yk surface as a part of the boundary defined by Yk = b such

107

that if a < b then the surface yk = a passes through the interior of region T_,

at least for a sufficiently close to b. Define a negative y_ surface in a similar

manner except in the opposite sense. Then flz -_-_k_l-21_° _ 1 J,k_j dry reduces to the

sum of surface integrals on the yt surfaces so that (7.50) can be written in the

final form

fB(A.n)ds = /B (_j[A') rl_ds , (7.51)

where

and

rlk
1

-1

0

on positive y_ surface
on negative Yk surface

on Yl surface, ! _ k

(752)

dy2dy3 on yl surface

dyldy3 on y2 surface

dyl dy2 on y3 surface

(7.53)

108

Chapter 8

The Porous Flow Equations

This chapter develops a set of modified Navier-Stokes equations with special

terms pertaining to flow through porous materials. The results of chapter 7 are

then used to represent these equations ill general curvilinear coordinates.

The general Navier-Stokes equations require modification in order to address

the computational reality that the particle size in a porous bed is generally much

smaller than a practical computational mesh size. In philosophy at least, porous

flow modeling has much in common with turbulence modeling -- both attempt
to deal with sub-grid-scale phenomena using various approximations.

8.1 The General Navier-Stokes equations

The general Navier-Stokes equations in conservative form and in coordinate-

independent notation are as follows. For a very thorough development of the

Navier-Stokes equations see Schlichting [15]. For a development more oriented

toward computation than basic physics see Peyret and Taylor [13] or Anderson,

Tannehill and Pletcher [1]. The equations presented here assume there are no
external forces.

Continuity
Op
O-t-+ V-(pV) = 0 (8.1)

Momentum

_(pv) + v. (pvv - _) = 0 (s.2)

Energy

O(pe) + v. (pev - .. v + q) = 0 (8.3)

where

109

p "--

t =
V =

O" -----

e

6' --

T ._

q --
K "--

density scalar field
time

velocity vector field
stress tensor field

e + ½V. V mass specific total energy
mass specific internal energy

= cvT for an ideal gas

temperature scalar field
-xVT heat-flux vector field

conductivity

Here, the V. operator is used to indicate the divergence of a vector or tensor

field, both of which are concepts independent of coordinates even though V. is

most easily understood in terms of its rectangular coordinate representations.

Likewise, tensors (dyads) such as VV and tensor-vector products such as o- • V

are coordinate independent concepts even though the notation strongly suggests
a representation in terms of matrix multiplication in rectangular coordinates.

8.2 Porous-Flow Formulation

The starting point for deriving the porous-flow equations will be the integral

form of the preceding Navier-Stokes equations presented in reference [13], section
1.1. However, first I will review the mathematical framework for decomposing

quantities into local averages and fluctuating parts.

8.2.1 Averaged Quantities

Following somewhat the conventions established in the porous-flow literature

(for example, reference [4]) I define a representative elemental volume {7 to be a

cube aligned with the coordinate axes whose side dimension, 2d_, is much larger

than the pore size but much smaller than the characteristic length of the overall

matrix. {7 is the finite-difference equivalent of the infinitesimal volume element

commonly used to derive so-called continuum differential equations. The factor
of 2 in the side dimension will make sense later in terms of centered finite-

difference formulae and the staggered-grid solution method. The fact that C is

a cube, or that it is aligned with the coordinate axes, are not strictly necessary

assumptions but convenient simplifications. The volume element may be moved

arbitrarily about the matrix; sometimes I use the notation C(r) to denotes that

{7 is centered at the point r. The faces of C are comprised of elemental squares

oriented in three basic directions. These squares are denoted Si, i = 1...3,

where the i subscript refers to the coordinate direction normal to the surface;

the notation Si(r) denotes that Si is centered at the point r. See figure 8.1.

The void volume within {7 is denoted V. The surface gv of V is broken into

two disjoint pieces: Sv_, the part intersecting the faces of {7, and S._, the interior

110

S_(r + dx_)

Sl(r -- dxl) C(r) Sl(r + dxl)

S_(r - dx2)

, el

Figure 8.1:

point r, and its faces.
dxi = dx ei.

J L_J \

) 0 (

Cross section of a representative elemental volume centered at

ei are the rectangular coordinate basis vectors and

Q 0

) 0 (
I I

Figure 8.2: The void part Y of a typical representative elemental volume showing

its surface components S_ = S,, U S_.

part. This is illustrated in figure 8.2.

The idea behind the representative volume element is that the average of

any gasdynamic quantity over {7 or]) removes sub-grid-scale inhomogeneity

without eliminating macroscopic inhomogeneity. The problem now is how to

reformulate the Navier-Stokes equations in terms of averaged variables. But

first some preliminaries.

Basic Definitions

Let G(r) represent any gasdynamic quantity such as density, velocity, etc. Since

gasdynamic quantities are only defined in the void part of the matrix, I assume
G is zero in the solid portion. The notation GO(r) will denote the average of G

111

overthe volume element C(r). That is

= (i/c) [(8.4)
de (r)

where C denotes the volume of C(r_). A similar average, this time taken over
only the void part of C is denoted G.

= (i/v) [Gdv (8.5)
Jv (r)

Since the integrals are equal in the two expressions, it is clear that

where

is the matrix porosity.

necessarily a constant.

(8.6)

= v/c (8.7)

Note that I am allowing 3 to be a function of r, not

Volume vs Surface Averages

A question that will come up is: How are averages over the elemental surfaces

Si related to volume averages? I assume that surface averages are carried out

in the ensemble sense -- on all possible realizations of the porous matrix. This

randomization effectively smooths out any variability in the surface void fraction

for any particular matrix realization. Also under this convention, the orientation

of the elemental surface is unimportant. Then, the average of a gasdynamic

quantity G over an elemental surface centered on a point r is the same as G_(r).

This follows because volume integrals are nothing more than surface integrals

swept through space. Also, the ensemble-average void fraction of Si is the same
as the volumetric void fraction of the matrix. From this it follows that the

average of G over the void part of a surface Si centered on a point r is the same
as G(r).

Microscopic Deviations

For a fixed point r0, the microscopic deviation of G from G(r0) will be denoted
by Gro. That is

Oro(r) = G(r) - G(r0) (8.8)

Note that G is a family of functions -- one for each point of application r0. As r

deviates more and more from r0, Gro deviates more and more from G. But this

will not be important since 0to will only be used within a small representative
volume or surface element. An important property of G is that

--7"-

Gr(r) = 0 (8.9)

112

whichfollowsimmediatelyfromthedefinitionsince

6 (r) = [(a(.)- av
Jv (r)

= c(r) - C(r)

In the above integral, the notation (-) denotes the integration variable.

At this point it may not be clear why G is based on the void-average instead

of the total volume average. The reason is that it makes more physical sense

this way. Consider density p for example. In an incompressible fluid,/_ = 0 as
defined above -- as expected. Were the definition based on the total volume,

would be non-zero because _c is smaller than p owing to the zero-weight fluid

density within the solid part of the matrix.

Averaging Sums and Products

What follows are two useful properties for sums and products of void-averaged

quantities, that will come in handy when deriving the porous Navier-Stokes

equations. Although the results are derived for volume averages, by the remarks

earlier, they apply also to surface averages. Let F and G be two gasdynamic

quantities. First, it follows immediately from the additive property of integrals
that

F + G = F + G (8.10)

A slightly more complicated result applies to products. Note that for any point r

FC(r) = 1/v [FG dv
Jv (r)

(r)

Factoring the constants F(r) and G(r) out of the integrals and applying equation

(8.9) to the middle two terms gives the final result

FG = FG+ [ZG (8.11)

8.2.2 Continuity Equation

The integral form of the continuum continuity equation applied to volume 1;

centered on a point r is

L L-_ pdv + pV . nds + pV .nds= 0 (8.12)
Vl _2

113

wheren is theoutward-pointingunit surfacenormal.Theintegralin thefirst
termis by definitionk'_ = /317_. The second integral may be simplified by

breaking Sv_ into pieces lying on the six faces Si of 17and using the -- notation

to represent each one. Note that on Si, n = +e/, the i th rectangular basis
vector, so that V. n = 4-ui, the i th velocity component. The third integral

vanishes since V • n = 0 on Sv2 because of the solid impermeability. Putting all

this together gives

O
[p/_p-dT]r_xx ' = 0 (8.13)+ r+ x,

i

where S denotes the area of surface element Si, dxi = dx ei and the expression in

square brackets symbolizes, for example, [r]_ = r(b) - r(a). Dividing through

by C gives
(9 1 r _---lr+dx,
a"t (/3"_(r)) -I- Z _ lPpUiJr-dx, = 0 (8.14)

i

The sum term is nothing more than the centrally-differenced finite-difference

divergence of the quantity in square brackets; using the V. operator to replace

the summation notation simplifies the notation greatly

0
0-'t (_) + V. (_p--V-) = 0 (8.15)

The fact that the _7- operator now refers to a macroscopic volume instead of the

customary infinitesimal one will cause no confusion. After all, the customary in-
finitesimal V- used in the continuum Navier-Stokes equations is really no better

since it actually refers to a volume element much larger than the molecular scale

-- certainly not infinitesimal. I am simply enlarging the scale a bit further.

8.2.3 Momentum Equation

The integral form of the continuum momentum equation applied to volume 1/

centered on a point r is

((°
(_ "1 w

This equation is based on Newton's second law: force = mass x acceleration.
The first term is the local contribution to mass x acceleration while the sur-

face integral of ((n • V)pV)ds over 3v_ is the advected contribution. The term

(n- V)pV is zero on the solid-boundary surface S. 2 because of the solid imper-
meability. The vector n • o" is the matrix product of the unit surface-normal

row-vector n with the stress tensor q. The surface integral of n • _r ds over the

total void surface Sv contributes the force part in Newton's law. A net force

results from thermodynamic pressure and viscous stresses on 8v.

114

Tomakepossible some porous-flow approximations, I chose to regroup equa-

tion (8.16) as

Ot ._ , ,2

Here, the total stress tensor has been decomposed into

tr = -PI + r (8.18)

where P is the thermodynamic pressure, I is the identity tensor and r is the
viscous stress tensor.

The First Term

The integral in the first term of equation (8.17) is by definition 13pV =/3C pV
so that

0 L C ° (/3p--V-) (8.19)-_ pV dv = Of

The Second Term

The second integral of equation (8.17) may be simplified by breaking the integral

over S_, into pieces lying on the six faces 8i of C then applying the sum rule

(8.10) and product rule (8.11). Remember that on $_, n = 4-ei and n.V = 4-u_,
the i th rectangular basis vector and velocity vector components. This gives

r +d'x,.° o +
"l i

(8.20)
Rewriting in terms of the finite-difference divergence operator gives

J$ ((n-V)pV-n. _')ds =CV./? (p'VV+ (p/V)*- _) (8.21)

where the vector product notation (for example: pV V) represents matrix mul-

tiplication of a column vector times a row vector -- yieldinj_ a tensor. Like

Reynold's apparent stress term of turbulent flow, the term (pV)X r cannot be

ignored since (p_r) and _r are both significant and correlated. More on the

meaning of this term later, but for the moment, I just leave it as is.

The Third Term

The third integral in equation (8.17) is the net thermodynamic pressure force
acting on the total surface of _'. One can, perhaps, best understand this term

by reflecting on a simple problem in hydrostatics. In a motionless fluid (V = 0)

115

subjectto a gravitational field, it is well known that pressure increases with

depth according to

VP = pa (8.22)

where a is the acceleration of gravity. Certainly this equation remains valid in
the presence of a porous matrix. On the other hand, a simple force balance on

volume 12 under these conditions gives

[n.Plds= [.padv:_Ca_ (8.23)
J b'v

That is: The net pressure force on its surface is balanced by the total external

gravitational force on 12. Combining this with (8.22) gives

Z -n. PI ds = _£VP (8.24)
v

The fact that VP is caused by a gravitational field is irrelevant to (8.24). The

same result can be derived by purely mathematical arguments based on a careful

accounting of the integral on the left.

The Fourth Term

Finally, the last integral in equation (8.17) is the total drag force in an elemental

volume C arising from the viscous stresses between the gas and the solid matrix
-- an experimentally measurable quantity. I assume

Z -n . r ds = -_C(4,. V) (8.25)
v 2

where _b is an empirical permeability-related tensor.

To justify approximation (8.25), consider the momentum equation (8.17) in
the case of uni-directional, steady incompressible flow in a matrix of uniform

porosity. Under these conditions, the first term, obviously, drops out. The

second term also drops out as can be seen from equation (8.21) where pV V is

constant, since V is constant, and both (p;V)V and _ are constant by symmetry

arguments in the ensemble-average sense. Approximating the third term using

(8.24), the momentum equation simplifies to

s n. ," ds = _C VP (8._6)

Now, there are various ways to approximate the pressure gradient VP in uni-

directional, steady incompressible flow. A widely used correlation is the Ergun

equation [11] which assumes a friction factor f of the form

Cl

f ----_e + c2 (8.27)

116

whereRe is the flow Reynolds number, and cl and c_ are two constants depend-

ing on the porous material structure but where always ca >> c2. Therefore, for

low Reynolds numbers -- which occur in many porous flow cases of interest --

the frictional pressure gradient works out to

VP = -(f/dh)pVV/2
pCl

- V (8.28)

at least for isotropic materials. Here dh is the hydraulic diameter, V = IV[and

/z is the fluid viscosity. Approximation (8.25) follows by combining equations
(8.26) and (8.28) then replacing _--_a_ V with the more general form _b • V.

The reason q_ is a tensor is because the tensor product q_ • V allows non-

isotropic flow resistance to be modeled. In the three-dimensional case, three

different resistance coefficients can be defined in each of three principal direc-
tions. Usually the porous matrix will be situated so the principal directions

coincide with the directions of the rectangular basis vectors ei. The detailed

representation of the porosity tensor _b in rectangular coordinates will be given
in section 8.3.

For higher Reynolds number flow, where c2 is no longer negligible compared

to ca�Re, one can use the complete Ergun friction factor to correlate pressure
gradient as

-- __Cl [l
VP = 2d_'" +')v (8.29)

where _ is a perturbation given by

c = c-2_Re (8.30)
Cl

Again, it is reasonable to represent pressure gradient in the general form VP =

-q_ • V, only this time, the tensor _b is a function of V instead of a constant.

Almost Final Form

Combining all the previous results and dividing through by £ gives the following
porous-material momentum equation

OtO(fl P--V-)+ V "I3 (pV V + (PV)_T - T) + fl V-fi + _ " flv = O (8.31)

8.2.4 Thermal Energy Equation

The integral form of the continuum energy equation applied to volume/) cen-
tered on a point r is

°/v /,-_ pe dv + n. (peV - _,. V + q) ds + n. q ds = 0 (8.32)
**l **2

117

Thisequationisamacroscopicstatementoftheenergyconservationprinciplein
voidvolumeY. The first term is the local rate of change of internal energy while

the surface integral of n. (peV) over $_, is the rate of internal energy advected

out ofl2. The integrM ofn.(er • V) over $_, is the rate of mechanical stress-work
done on _2, where the vector _r. V is understood in terms of the matrix product

of a tensor and a column-vector. The term n • (peV - _ • V) does not appear

in the third integral because of the no-slip velocity boundary condition on the

solid-boundary surface S_. The surface integrals of n • q represent the rate of

heat leaving l_' through conduction.

The First Term

The integral in the first term of equation (8.32) is by definition)2 _ = _C _ so
that

-_ pe dv = C_ (ff_) (8.33)

The Second Term

The second integral of equation (8.32) may be simplified by breaking the integral

over S_ into pieces lying on the six faces Si of C then applying the sum rule

(8.10) and product rule (8.11) for averages. Note that on Si, n = =t=ei, n- V =
=t=u_ and n • q = =t:q_ , the i_h rectangular basis vector, velocity and heat-flux

components. This gives

fs (peV • V + q) ds =
n. g

wl

-- • \1 r+dX,

/Jr-dx,
i

Rewriting in terms of the finite-difference divergence operator gives

Is n.(peV-er . V + q)ds =
wl

The Third Term

I assume the sub-grid-scMe heat flux per unit void-volume between the gas and

the porous solid is given by a scalar Q = hs(T" - T), where h is a film heat-
transfer coefficient, s is the matrix surface area per unit void volume and _s is

the local average solid temperature

1 fc Tdv (8.36)T'(r) - C - V (r)-v(r)

118

Thenthethird integralinequation(8.32)becomes

fs n.qds : -_CQ
w2

(8.37)

Almost Final Form

Combining all the previous results and dividing through by C gives the following

thermal energy equation for the fluid within a porous material

0 V 9++ v. - - • q) - ZO = 0 (8.38)

At this point I go ahead and assume that the term _ has lumped with it, the

heat flux leaving C' through the solid part of its boundary. This avoids having

to deal with heat flux separately in the solid energy equation -- a big help
computationally.

8.2.5 Solid Energy Equation

In addition to the gasdynamic equations, an energy equation is required for

the porous solid in order to complete the set of equations. I ignore solid-mode

conductive heat flux arguing that for all cases of practical interest the porous

solid is in good thermal contact with the gas so that, as noted before, the heat

flux term V ._ already present in the gas energy equation suffices for both, with

perhaps an empirical adjustment in gas conductivity. I consider only the local

heat transfer between the gas and the solid. The resulting solid energy equation
is then very simple

OE,
0--t--+ _Q = 0 (8.39)

where

E, = (1 - B)p,c, Ts solid volume-specific energy

p, = solid density

c, = solid specific heat

T, = T °, the local-average solid temperature

8.2.6 Closure

There are a few loose ends in the forgoing development which must be tied
up before the porous-flow equations are computationally useful. Quantities of

--r-r,
the form FG that have been accumulating must be approximated in terms of

computable variables. Keep in mind that I'm looking for equations that can
accommodate the whole spectrum of porous materials -- from densely packed,

all the way to no packing at all. For this reason, if it seems I retain some terms

that might reasonably be neglected for densely packed materials, it is because
they are important in diffuse materials or empty manifolds.

119

Independent Variables

Although there is some freedom in choosing them, one must have exactly as

many independent variables as there are equations to be solved. I choose the
following quantities to be independent variables:

_ pV "f_ T,

This choice reflects typical practice in computational fluid dynamics. All the

remaining variables used in the porous-flow equations must be expressed in
terms of these.

Void-Average Velocity

Unfortunately the local void-average velocity V is not an independent variable,

nor is it directly calculable from the preceding choice of independent variables.

The most natural approximation for V is

v = pv/ (8.40)

-'-'7- -- "-'7"

which is equivalent to neglecting _V in the expansion pV = _V+_V. Neglecting
""7-

_V might not always be a good idea. There are situations where fi and "Q

might well be correlated -- in the presence of a density gradient (temperatur___ee

gradient), for example. However, lacking a suitable way to approximate j6V

in terms of independent computational variables, I assume equation (8.40) is
correct.

Void-Average Energy

Similarly, the local void-average energy density _ is not an independent variable.

The most natural approximation for _ is

e = pe/_ (8.41)

which is equivalent to neglecting t_e in the expansion _'g = p e + tld. This is

justified since both _ and _ are relatively small, leading to second-order smallness
in the product.

Void-Average Temperature

An ideal gas assumption relates the mass-specific total energy e and temperature
T in the g_s-fllled part of the matrix 1).

IV-V (8.42)
e=cvT+ 2

120

I assumethatT may be solved from

1V. V (8.43)
= c_T+ 2

which is equivalent to neglecting _r. _r in the expansion V. V = V. V + V- V.

Since the kinetic-energy fraction of the total energy is generally small in porous

flow, this approximation is reasonably close.

Void-Average Pressure

Pressure is determined via an ideal gas equation of state which holds in the

gas-filled part of the matrix V

P = RpT (8.44)

where P is pressure and R is a gas constant. I assume that

P = R_T (8.45)

which is equivalent to neglecting _--_ in the expansion p-'T = _T + _--_. This is

justified since both/_ and T are relatively small leading to second-order smallness
in the product.

Enhanced Viscosity

At this point I lump together the stress tensor T, occurring in the momentum

equation (8.31), with the term (p_¢)_" to produce an effective stress tensor r¢.

First, recall how the molecular stress tensor _" is defined in terms of molecular

viscosity p. According to reference [13] (section 1.1) it is possible to write the

stress tensor "r, somewhat awkwardly, as

7" = p (2defY- 2(V • U)I) (8.46)

where I is the identity tensor and defV = ½(VV + (VV)t), the t superscript
denoting transpose.

Arguing that the term (p_C)_r is akin to Reynold's apparent stress of tur-

bulent flow theory, I now lump _ and (p_r)v together into an overall effective

stress tensor re which I assume can be written in the form

re=p, 2defV-

where #e is an effective viscosity coefficient. The actual value of Pe cannot

be obtained from the sort of analysis presented here -- it must be determined
experimentally.

121

Enhanced Conductivity and Stress Work

The term _(p_V), which occurs in the energy equation (8.38), gives rise to two

separate energy transport mechanisms. One can see this by recalling that for

an ideal gas, e = c,_T+ ½V • V, so that

= cJ_(p_ r) + _(V ' V)(p';¢) (8.48)_(p_r)

The first term on the right of (8.48) represents the flux of thermal energy

per unit area carried by the fluctuating velocity components. In the presence of

a temperature gradient, T and (pV) are likely to be correlated. Based partly

on experimentally observed enhancement of thermal diffusivity in flow through

porous materials, and partly on theoretical arguments similar to those used in

turbulent flow, it is reasonable to assume that _(p_r) is proportional to -VT.

Therefore, I lump together _ and c_'(pV) into an effective overall heat-flux

vector qe defined by

qe = q+ c_7_(P _¢) = -_eVT (8.49)

where _;_ is an overall effective conductivity. Again, the value of _;, would

be determined experimentally; where qe would be calculated from the total

heat-flux across a matrix section divided by the mean void area. q_ lumps
together the molecular gas conduction, the eddy conduction and the solid-mode
conduction.

The second term on the right of (8.48) represents the flux of fluctuating ki-

netic energy per unit area transported by the fluctuating velocity components.

This phenomenon bears the same relationship to the computational equations as

does molecular kinetic energy transport to the continuum Navier-Stokes equa-

tions. In the Navier-Stokes equations, the effects of molecular momentum flux

are embodied in the fluid stress tensor "r and the flux of molecular kinetic energy

works out to -_" - V. At the scale of the macroscopic (yet still sub-grid scale)
velocity fluctuations, the role of 1" is superseded by the apparent excess-over-

molecular stress tensor (re - r), so by analogy, it is reasonable to account for

the fluctuating kinetic energy flux as

= - ¥7. (8.50): V V

Putting this all together, and decomposing ¢r into _'-PI, the three terms _(pV),

and _. V occuring in energy equation (8.38) may be re-written as

_(pV) - _-V + _ = PV - _-_-e• V + qe (8.51)

122

The Term b.

I choose to neglectthe term b. V in the energy equation (8.38).

definitionofor,thisterm may be expanded as

From the

.v=.v-Pv (8.52)

It is reasonable to neglect the second term on the right on the grounds that/5

is not correlated with V. Neglecting first term, however, requires a bit more
justification since ÷ and V are definitely correlated.

I will argue component-wise that ÷ • _r is negligible -- at least to the extent

that the gas behaves as an incompressible fluid. The jth component of ÷ . V in

rectangular coordinates is given by

(+ .v)# = ÷i_dk (8.53)

where the summation convention applies to the repeated k index. Now for an

incompressible fluid, the stress tensor components rjt are

qk : I.t \ Ozk + c3z#] (8.54)

so that

• , faD_. o_.

Making use of the product rule for differentiation gives

(8.55)

(0 00,÷_ =. 0-_ (_)-_'_-_ + _ (8.58)

But the middle term on the right vanishes since _ = 0 for an incompressible
_9ark

fluid. (To see this, use definition (8.8) to write fik = uk -_k, then note that
= 0 by the usual continity equation and _ = 0 by the porous continuity

O_k O.v_

equation (8.15) --- at least assuming porosity fl is constant.) So ÷j_fik may now
be written

(0÷_ =, _ (_i_) + _ (8.57)

The right side of (8.57) can be broken down into a sum of volume integrals each
of which has an integrand that is a perfect differential in one of the integration

directions. By appropriately choosing the integration order, these integrals re-

duce to planar integrals of [d/fib] and [fi_] evaluated at the endpoints (including

those in the interior) of the broken line segments formed by the intersection of

the coordinate lines (in the direction of the perfect differential) with 1;. Now, on

123

the boundaries of 12, V = 0 so that _" = -V and the above evaluated quantities

tend to cancel in pairs (V does not vary much at the scale of the porosity void

size). I conclude from all this that, in the case of an incompressible fluid at least,

÷ • _' is small. If it is not exactly zero, then at least it does not scale in pro-

portion to the intensity of the fluctuating velocity components as, for example,

 (iv) do s.

The Term _pV

The term _pV, which appears in the energy equation (8.38), is conventionally
evaluated as _-_V instead. There is no problem in doing this here as well. By

assumptions previously made, pV can be decomposed into p-V, then _ can be

re-combined into _-_ . Again, the decomposing part assumes _6_r is negligible

and the re-combining part assumes _6d is negligible.

Summary

At this point it is safe to drop the -- notation in order to simplify things.

Hereafter, the gasdynamic variables p, V, e, T and P will always refer to their

local void-fraction averages. In terms of computational variables this makes

perfect sense and will cause no confusion.

The porous-flow gasdynamic equations may now be written in their final
form as follows:

Porous Continuity

_(_p) + v. (_pv) = 0

Porous Momentum

°(/_vv) + v. (_pvv - _,,o) + _vP + _. _v = 0

(8.58)

(8.59)

Porous Thermal Energy

-_(p) + V. (flpeV + P/3V- r../3V +/3q.) -/3Q = 0 (8.60)

where re is the effective stress tensor defined by equation (8.47), _b is the poros-

ity tensor discussed in section 8.2.3 and q_ is the effective heat flux vector

defined by equation (8.49). Note that for problems where porosity is constant,
/3 may be factored out of all the equations.

The above equation set is especially suited to numerical solution in domains

containing porosity discontinuities. If one uses a staggered-grid finite-difference

solution scheme, it is possible to arrange the momentum equation to be solved at
the discontinuity and the continuity and energy equations at staggered locations.

124

Thisway,theonlytermsthatneedbeevaluatedat thediscontinuityare:/3pV,

_VP, _. flY, flpeV, P/3V, "r_-/3V and/3q,. The term/3pV is time-differenced

in the momentum equation and spatially differenced in the continuity equation,

the terms/3VP and _b./3V are just evaluated in the momentum equation, while

the remaining terms are spatially differenced in the energy equation. With the

exception of/3xTP and _b . /3V, all of these terms are continuous at porosity
discontinuities since they represent net fluxes per unit total area: /3pV is mo-

mentum flux, /3peV is internal gas energy flux, P/3V is normal-pressure work
flux, "re •/3V is viscous-stress work flux and fIqe is conductive heat flux. The

terms/3VP and ¢./3V may be evaluated by averaging/3 and ¢ on either side

of the discontinuity.

8.3 Rectangular Coordinate Representations

Some of the key terms that are used in the porous-flow equations are defined

here in terms of rectangular coordinate representations.

8.3.1 Effective Viscous Stress Tensor

The components of the effective viscous stress tensor re in rectangular coordi-

nates are (summation convention)

((cgui cOuj)_2 cOu_ (8.61)

where

6ij --

P =

U i

Kronecker delta function

effective viscosity

pressure
velocity components in rectangular coordinates

In two dimensions the components of "re are explicitly

2 .20u, 0u_)

, Oul c9u2)
r_12 = mt-O'-_x2 + Oxl

, Ou2 8ul _

2 ,20u2 Oul
_'_2_ = -5_'_ _ 0_)

(8.62)

(8.63)

(8.64)

(8.65)

125

8.3.2 Permeability Tensor

Motivated by the discussion in section 8.2.3, I define the following representation

for permeability tensor _b in terms of rectangular coordinates

i' OC q (8.66)_,j = _-g_(1 +

where e is a scalar perturbation which grows with Reynolds number according

to equation (8.30) and the Cij are dimensionless coefficients that depend on the

nature of the porous material. For isotropic flow

Ciy = c,_ 0 (8.67)

where cl is the first coefficient in the friction factor of the Ergun equation (8.27).

For non-isotropic flow where the principal directions are the rectangular basis
vectors el

C-- (C10 C20) (8.68)

where Ci is the first Ergun coefficient in the ei direction. For non-isotropic

flow where the principal directions have been rotated off-axis, one would have

to resort to tensor transformation rules such as (7.33) and (7.34) to obtain the

Cij from the previous case.

8.3.3 Two-Dimensional Equations in Rectangular Coor-

dinates

For reference purposes, the porous-flow equations are written here in terms of

rectangular coordinates and in two-dimensions. The solid energy equation (8.39)

is not included since it is already in simplest form.

Continuity

Momentum

O(flpul)

= 0 (8.69)

0 0

OP
+ -z-- + ¢11_ul + Cx_u_ = 0

o;r l

u_ - T._))

(8.70)

0+ (_(pu2u_ - _,1_))+
OP

+ _ + ¢21_ul + _22_u2 = 0

(Z(pu_ - _0_))

(8.71)

126

Energy

0
+ _ (/3(/,eu_ + vu_ - u:,. - u2r,_2 + q,_)) (8.72)

0
+ z-:--_(/_(:_u2+ P_,2- u:'o2_ - u:',2_ + q,2)) -/_O = o

UX2

8.4 Dimensionless Form

One can choose normalization quantities so that, in dimensionless form, the

porous flow equations will appear exactly as before. This is standard practice

except for a few twists due to special terms in the porous-flow equations and

the oscillating boundary conditions present in regenerator flow problems.

First choose characteristic values P0, uo, _o and _0 for density, velocity, vis-

cosity and conductivity. The choice is arbitrary but Manifest uses u0 = vFTRTo,

the speed of sound at characteristic temperature To, because then velocities are

represented as Mach numbers. The angular frequency w of the oscillating inlet

boundary conditions is another characteristic value which is used in place of a
characteristic time.

Now define dimensionless time and position coordinates by

t* = wt (8.73)
OJ

x* = --x (8.74)
_0

Before tackling the complicated porous flow equations, it is useful to see how
the simple generic equation

OA OB

07 + _-_ + C = 0 (8.75)

is made dimensionless. Using the chain rule one can transform the left side of
Or* -4- OB Or ° OA OB

(8.75) to _ ot - _* _ + C = _irw + _.w/uo + C. Factoring out the _ gives

OA 10B C

Or* + + -- = 0 (8.76)
U 0 02* OJ

The conclusion is: If a normalization quantity N makes A/N dimensionless,

then B/(uoN) and C/(wN) are also dimensionless. This observation saves a lot

of work since one has only to worry about how to normalize the first term in an
equation.

In light of the preceding observation, the porous-flow equations are made

dimensionless by the substitution of the following starred quantities:

P* = P/PO "r*e = "re/(pou2o) qe = qe/(pouo 3)

u; = uJ,,o ,¢,* = ,/,/(po_) Q" = e/(,,,/,ouo2)
P" = P/(pou_) e* = e/u_ E: = E,/(poug)

127

Theformoftheequations remains exactly the same.
The constitutive relations for dimensionless "r_, _b*, q_, Q* and E_ are de-

rived next. They are almost -- but not quite -- in their previous form.

First, define some dimensionless quantities that will be required along the

way.

T* = T(cp/u2o); dimensionless temperature
Reo = pou_/(pow); characteristic Reynolds number

Win0 = __P0; characteristic Womersley number

P_o = poCp / t¢o; characteristic Prandtl number

Nt_ = hs/(wpocp); number of transfer units
,_ = (1 - _)psc,/(_pocp); solid-to-void heat capacity ratio

Here, cp is the gas specific heat at constant pressure which is assumed to be
a constant. Also recall that s used in Ntu is the matrix surface area per unit

void volume, not the total surface area. And note that Nt_ may vary if h is

considered a function of flow velocity.

From the preceding results one can derive the following dimensionless rela-

tions in rectangular coordinates which replace the earlier dimensional formula-

tions. Hereafter I drop the stars from the notation because all subsequent

expressions will involve only dimensionless quantities.

1 ((Oui Ouj)_ 20uk_ (8.77)
r_° - R_ _'_ \ Ox_ + Ox_ 36° Ozk]

1 + e (8.78)
¢ij -- 8Win20pcij

-_:_ OT (8.79)
q_i - R_oP_o Oxi

Q = Nt_(T, - T) (8.80)

E, = _T, (8.81)

Also, the following dimensionless relations hold for an ideal gas

T = r(e- _V _) (8.82)

P = (7- 1)p(e- 1V2) (8.83)

p _ 7- lpT (8.84)
7

where 7 = %/c_ is the ratio of gas specific heats. The third relation is the
dimensionless version of the ideal-gas equation of state.

128

8.5 Porous Flow Equations in Curvilinear Co-
ordinates

This section uses the coordinate transformation theory developed in chapter 7 to

write the porous-flow equations in arbitrary eurvilinear coordinates. The formu-

lations are, for the most part, a m_lange of the work of several authors who have

come this way before. Viviand [20] is usually credited with first deriving strong
conservative forms for the gasdynamic equations under general time-dependent

coordinate transformations. Less practical though more mathematically ele-
gant are the results of Vinokur [19] who presents his results entirely in terms of

curvilinear components. Peyret and Taylor [13] and Anderson, Tannehill and
Pletcher [1] review the literature on the subject in textbook form. From the

point of view of the non-expert, all of the above sources tend to quote rather

than derive results, which is one of the reason that this presentation attempts
to be reasonably detailed.

Remember that the reason for bothering with curvilinear coordinates in the

first place is so that a rectangular array can always be used for the computational

grid even though the actual physical solution domain is non-rectangular. The
idea is to generate a coordinate transformation so that the curvilinear coordinate

surfaces (Yk = constant) fall on the boundaries of the physical solution domain.
Then if the system differential equations are written so that terms of the form

0

0,--7are replaced with terms of the form 0, one can set up the finite-difference
• . cnJk

solution scheme in a rectangular grid. Note that nothing has been said about

actually generating eurvilinear coordinates; this will be discussed in chapter.
10.

There are several different ways to proceed depending on whether the equa-
tions are cast in conservative or non-conservative form, and whether curvilinear

coordinates are used to represent all quantities or are mixed with rectangular co-
ordinate representations• Since all that is really required is to replace o terms
with _ terms, one has several choices on how to represent everything else.

a_k

In particular, some authors choose to retain the rectangular coordinate repre-

sentation for velocity in terms of components (ul, u2, ua) while others choose to

represent the transformed equations in terms of eurvilinear velocity components

(u 1, u _, u3). I choose a mixed approach out of the need for computational speed
and because of the staggered-grid solution scheme used by Manifest.

8.5.1 Staggered Grids

In a staggered-grid solution in rectangular coordinates the flow-related variables

pui are solved at different grid locations from the property-related variables p
and pe. In addition to making good conceptual sense, staggered grid formula-

tions also prevent the checkerboard instability problem common to non-staggered

solutions -- see Issa [9]. The most natural way to stagger the solution is the

129

e2

PUl _
P

oe

pu2

pul

el

Figure 8.3: The MAC staggered-grid scheme for rectangular coordinates in
two-dimensions

MAC (marker and cell) scheme illustrated for two dimensions and rectangular

coordinates in figure 8.3. The labeled quantities are solved at the indicated

locations of a typical control volume. The control volume itself is made up of

coordinate line segments (x_ = constant) of length equal to twice the spacing

of nodes in the computational grid. In other words, a computational node lies
at each corner, the midpoint of each side and the center of the control volume.

The MAC scheme is intuitively satisfying because, in an array of such control

volumes, the solved pressures (_ pc) are located in the natural position for cen-

tral differencing of the _)P terms found in the momentum equations for the pui
variables.

Figure 8.4 shows the logical extension of the MAC scheme to curvilinear

coordinates. Now the typical control volume is made up ofcurvilinear coordinate

line segments (Yk = constant) and the components of momentum flux solved

at the midpoints of each side are the curvilinear components (pui). Again, the

solved pressures are located in the natural position for central differencing of the
OP
_-7 terms found in the curvilinear momentum equations for the pu' variables

-- as will be seen -- although the dominance of the _ term diminishes asoy
the curvilinear coordinates become more and more skewed• One of the key
requirements for the transformed equation set is that the curvilinear momentum

flux components pu' should wind up as independent variables in the momentum

equations.

The curvilinear equations presented below are consistent with the MAC

130

g2 __ Pul

pu 1

Figure 8.4: The MAC staggered-grid scheme for curvilinear coordinates in
two-dimensions

staggered-grid scheme and also strongly conservative. All equations are in di-

mensionless form consistent with the conventions presented earlier in section
8.4.

8.5.2 Computational Variables

At this point it is convenient to define three new independent variables in order

to simplify the following material. A good all-around choice is

M = p

G = flpV
E = pe

where p is dimensionless void-average gas density,/_ is matrix porosity, V is di-

mensionless void-average gas velocity and e is dimcnsionless void-average mass-

specific gas energy density. The components of G are deroted Gj or G k in
rectangular or curvilinear coordinates respectively. A computationally impor-

tant property shared by all three variables is that they are continuous across

porosity discontinuities. These variables supersede the previous independent

variables p, pV and pc defined earlier. But, since _ is assumed known every-
where, the two sets of variables are entirely equivalent. The solid temperature

T, remains the fourth independent variable, the same as before.

Actually, the most concise equations would result by choosing/_p/J,/_pV/J
and flpe/J as independent variables. But for computational reasons, it turns out

131

thatthis is a poor choice. The problem is that in a staggered-grid solution, the

independent variables must be interpolated or extrapolated to non-solved grid

points. The factor of 1/J in these variables causes difficulty in regions where the

coordinate transformation is highly nonlinear. Likewise, in the variables _p/J

and _pe/d, the factor of _ causes difficulty near porosity discontinuities. The

result is that, in some situations, unacceptably large truncation errors can arise

-- especially when using course computational grids.

8.5.3 Continuity Equation

Starting with the continuity equation (8.58), use (7.48) to replace the _(/_p)

term and (7.39) to replace the V. (flpV) term, obtaining

For the case of a time-independent coordinate transformation this becomes sim-
ply

0. ,0o--7-+ _ _ = 0 (8.86)

8.5.4 Momentum Equation

Start with the porous-flow momentum equation (8.59). First rewrite VP as

V. PI, then use (7.48) to replace the _(flpV) term and (7.42) to replace the
V. (/3pVV - fir,) and V. PI terms, obtaining finally the following general form

of the porous flow momentum equation in curvilinear coordinates.

G t k G _
jO(.fg,)or + J O--_-(G_f utgt- _r'tgt + _t "-fgOoy,

+ /?Jo---_0k(PI'tg,)+_b._V=0y (8.87)

Unfortunately the curvilinear components of the stress tensor (rke t) are expensive
to compute. It is more efficient to back off from (8.87) by using (7.40) instead

of (7.42) to replace the V • (_pVV - fire) and V • PI terms in the original

momentum equation. After noting that ui-_, = uk and 4) • V = ¢jau.kej
from (7.30), the resulting momentum equation involving mixed rectangular and
curvilinear components is

J_ 7g_ +

+

c k _ o_k_
j O_.O_(-yu_e_ _ OykOyk . jreij cOx---_ej+ _ j ej)

Zj _;_ _ej) + _ u_ei = 0 (8.88)

132

Mixedcomponentsarenoproblemsinceboth rectangularandcurvilinearve-
locitycomponentsarereadilyavailableandther, 0 can be easily calculated as
shown below.

For the case of a time-independent coordinate transformation (8.88) becomes

__ j__0_.0 G k
0 (G'g,) + (--_-ujej-_reijOY_e "_xiJ]Or Oy_

/3j O [P Oyk+
Y _-]_xjej) +l_bj_ukei

= o (8.89)

Now, the constant basis vectors ej can be factored out of the second term of

(8.89) and since the gt are assumed time-independent, they can be factored

out of the first term. The equation can then be broken down into three scalar

equations by forming the dot product with the alternate basis vectors _Tyl, _Ty_

and _7y3 in succession. Using the relations gt • Vyn = bin (equation 7.22) and

ej - Wy, = _0_j, the momentum equation becomes

OG n (j 0

= 0

+

(8.90)

forn=l...3.

The rectangular components of the dimensionless stress tensor "re are ob-
tained from (8.77), but first, the equation must be transformed to use _ partial

derivatives. Note that the factor _ = W. V can be written using (7.39) as
Oxk

J_°-_.(u_/J).,y_...Then use the chain rule on the remaining terms to obtain

#" (Ou_ OYt cgui Oyt 2 _---_n)Veij - Reo \ Oyt Oxj + 9yt Ozi _6ij J (ut/J)
(8.91)

Here rectangular and curvilinear velocity components are intentionally mixed

to simplify the formula. For actual computation in two dimensions, the explicit

forms for re given in (8.62) through (8.65} can be transformed according to the

chain rule to give the less general, although more efficient, form

2 2 c9ul Oys Ou20yl
r_11 = _Pe(Oyt Oxl Oyt Oz2) (8.92)

Oul Oyt Ou2 0y_

r_12 = Ile(_Yt bx2 + Oyl bxl) (8.93)

,Ou2 0yl OUl Oyt) (8.94)

2 ,2c_u2 byl c_ul cgyt) (8.95)
r,22 = -_a _ Oz2 Oyz Oz_

133

8.5.5 Thermal Energy Equation

Startingwith theenergyequation(8.60),use(?.48)toreplacethe°(_pe) term

and (7.39) to replace the V. (flpeV + P_V - "re" flV + flq) term, obtaining

Oyt

- _Q = 0 (8.96)

For the case of a time-independent coordinate transformation this becomes

07 + b- yk (pzv) _ 1-- y(ve./_V) k + yq, - Q = 0 (8.97)

Using the transformation rule (7.25) followed by definition (7.30), the curvi-

linear components of re .DV may be obtained from their rectangular components
as

Oy_ (8.98)
(r_ • _V) k =flr, ii u_ Ozi

where the reij are calculated as in the previous section.
oyk

Similarly the curvilinear components of qe may be written q_ = qeio_.,
where the qei are calculated from the dimensionless form (8.79). Using the

chain rule to rewrite aT0,,= P_ZOy,_0., gives the dimensionless form

q_ _ -,ce cgyt c3yk 3T (8.99)
R_oPro Ozl Ozi Oyt

8.5.6 Solid Energy Equation

Start with the solid energy equation (8.39), except replace Es with/3AT, accord-

ing to equation (8.81). Then use (7.48) to replace the _(/3AT0) term, obtaining

jo
Or Oy_

For the case of a time-independent transformation this becomes

0-_(AT,) + Q = 0 (8.101)

Why is T0 taken as an independent variable rather than Es? The reason is
purely a computational one. In some cases it makes sense to treat the matrix

as isothermal and ignore the solid energy equation. Manifest selects this option

whenever the input parameter A is set equal to zero. But, it is still necessary
to have Ts defined in order to compute the heat transfer term Q. This would

be tough to do if Es were the independent variable, since Ts = Es/(_A) would

then be undefined. The problem disappears if T_ is the independent variable:

In the isothermal case T0 can simply be held fixed at its initial value.

134

Chapter 9

The Computational

Algorithm

This chapter discusses Manifest's numerical algorithms without actually getting

involved in programming details. Readers interested in actual software structure

will find plenty of comments nested within the source code to guide them. But

this chapter is a prerequisite.

9.1 The Grid

Manifest's computational grid is a two-dimensional array of discrete curvilinear

coordinates (Yl, y2)[i,j] = (iAy,jAy) where indices [i,j] range between limits

i = 1 ...N1 and j = 1... N2 and Ay is some fixed but arbitrary spacing. Array

upper bounds N1 and N2 vary from problem to problem depending on the reso-

lution desired in the solution. This computational grid ultimately corresponds,
by way of a coordinate transformation, to an actual physical grid in Euclidean

space where the points are not necessarily uniformly spaced nor arranged in

rectangular fashion. But the computational algorithm only knows this by the

transformation Jacobian and partial derivative matrices Xy and Yx stored at
every point of the grid. The matter of solving the coordinate transformation is

discussed separately in chapter 10.

9.2 The Gasdynamic Variables

At each location of the computational grid is defined a set of gasdynamic vari-

ables which will eventually hold the numerical problem solution at successive

time steps. These variables are M, G, E and Ts defined in section 8.5.2. How-

ever, not all these variables are actually solved independently. Some are in-

135

terpolatedfromnearby solved variables in accordance with the staggered-grid

MAC (marker and cell) solution scheme discussed in section 8.5.1, and some are

determined by boundary conditions. I will get back to the matters of interpo-

lation and boundary conditions later on, but for the moment, all that matters

is that the gas dynamic variables can be partitioned into two sets: those that

are independently solved and those that are not. By ordering the components

of these two sets in some way (details not important) I arrive at two arrays V

and D. The components V_ of V are the independently solved variables. The

components Dk of D are dependent on V and time v in the form

n_ = Fk(V, r) (9.1)

where the various functions F} take care of the interpolations or extrapolations

required by the staggered-grid scheme as well as boundary conditions.
It is in terms of the array V that the solution algorithm proceeds. Again,

the ordering of components in V is not important. Each component is either
M, G1, G_ or Ts for some grid index [/,j]. The computer keeps track of the

ordering. We do not have to. To understand the following solution algorithm

just think of V as an ordinary array or vector.

9.3 Time Stepping

Manifest is built around a solution scheme originally proposed by Beam and

Warming [2,3]. However, I depart from their presentation in order to handle, in
a general way, exceptions to the rule produced by staggered-grids and arbitrary

boundary conditions. Also, I have eliminated a matrix factoring step that was

central to their method. For small or medium sized gasdynamic problems,

the resulting full-system scheme is both faster and more accurate, although its

asymptotic behavior for large problems remains an open question.
It will help to first review the essentials of the Beam and Warming solution

method. The b:_sic problem is formulated as a coupled nonlinear system of

differential equations in the form

OV
0--_ -t- R(V, r) = 0 (9.2)

where V is the array of solved gasdynamic variables discussed above, and R
contains approximations to everything besides the time-partial terms in the un-

derlying partial differential equations -- finite-difference formulations for spatial

partial derivatives and so forth. At this point, I still consider time to be a con-

tinuum variable. A solution to the system (9.2) is an approximate solution to

the original system of continuum differential equations.

The temporal identity upon which the solution algorithm is based is

clAr OAV r_ Ar (gV r_ c_ AVn_ 1
AVn -- 1+c2 (gr + 1+c2 0r + 1+c2

136

+o ((el- c2- 112) r2+ Ar3) (9.3)

where V" = V(nAr), AV" = V "+1 - V n, and el and c2 are constants of the

method. For (Cl, e2) = (1/2, 0), equation (9.3) represents the implicit trapezoid
method

V "+1- V n 1 (OV '_+' OV'*'_ (0.4)
Ar -2\ + 0r/

and for (c_, c2) = (1, 1/2) it represents the three-point backward implicit method.

3V "+1 - 4V" + V "-x OV "+1
- (9.5)

2At 8r

Assuming the solution V" at time-level n is known, (9.3) allows us to step

the solution forward in time. In principle, all we need do is substitute -R for
ov
o--7-on the right side of (9.3). The problem is: How does one evaluate R"+I?

The fact that R is a nonlinear function of V doesn't help matters but in any
case we can make use of the Taylor series expansion

OR"
R "+l =R"+ _r +JnAVn+O(Ar 2) (9.6)

where J" is the Jacobian matrix OR_-V at time-level n. Making this substitution
and grouping all the AV" terms on the left, the implicit scheme for advancing
the solution to level n + 1 becomes

ClAr Jn'/ ClAr 20R" Ar R n (:2 AVn_ 1I + _] A V" - l + c_ Or 1+c2 + 1+c2
(9.7)

Note that the O(AT 3) temporal accuracy of (9.3) is not affected by the O(Ar 2)

R n+l approximation because the R terms already contain a factor AF. Manifest

takes its initial time step with (Cl,C2) = (1/2,0) because then the AV "-1

term on the right (which is unknown) is moot. Subsequent steps use (cl, c2) =

(1,1/2).
A key step in the Beam and Warming algorithm is to decompose the Jacobian

into three parts J = Jl+J2-t-J_ (dropping the n superscript for clarity), bringing

the J= term over to the right-hand side to be explicitly (and approximately)
¢-¢J-_-_JAV n-I and approximating the remaining terms on theevaluated as - 1+¢2 x

left using the factorization

I + 1 +c----_ _J1 + J2) '_ I + --all+e2 I + 1---_c2 J2) (9.8)

Roughly speaking, the terms of Jh J2 and J_ result from spatial differences of

R in the yl-direction, y2-direction : nd cross coordinate directions respectively.

The factorization of (9.8) makes the solution more efficient because J1 and J2
are narrow-bandwidth block-diagonal matrices.

137

Unfortunately,factorizationreduces accuracy. Equation (9.8) leaves out the

term [1+c2) J1$2 which can be significant if Ar is not too small or .11 and
J_ contain large terms. Both of these problems seem likely in normal use of

Manifest. Also, evaluating the J_ term explicitly introduces another error of

uncertain magnitude, and there is no good way to proceed for the first time step,

where AV n-1 is not known. John Lavery at NASA Lewis (with whom I had

the good fortune to discuss my algorithm) pointed out that even though there

is no simple way to do an error analysis for the factored method, one thing is

certain: it throws away information in the Jacobian. If that information turns

out to be vital, then accuracy will suffer.

To avoid these problems, Manifest just solves the full system (9.7) directly.

The only disadvantages to doing this are -- and they are potentially big ones

-- that both execution time and memory requirements grow more quickly with
increasing system dimension N than for a factored scheme. The key questions

are:

1. How do the times for the linear system solutions vary with N for the

full-system vs factored method?

2. How does accuracy vary with N?

The answer to question (1) is relatively easy: The factored scheme has
asymptotic time behavior of O(N) while the full-system scheme goes as O(N 2)

-- at least for a square computational domain and the Gaussian elimination

algorithm in Manifest. The reason for the factored-scheme behavior is that

the block size and bandwidth of the block-diagonal system are independent of

N. Thus, each of the N steps of the Gaussian elimination process requires a
fixed number of calculations. In the full-system matrix, on the other hand,

the bandwidth (which depends on how the terms are ordered) is proportional
to the number of cells on the shortest side of the computational domain -- to

O(vt-N) for a square domain. In this case, each of the N steps of the Gaussian

elimination process requires a number of calculations itself proportional to N

-- resulting in O(N 2) total operations. At first thought it might seem that,

since most of the terms in the full-system matrix are zero, the time for each

step of the elimination process would be somewhat less than O(N). Ah... were

it only true. Because of the so-called filling problem of sparse matrices, zero
terms become filled-in with non-zero terms as the elimination process is carried
out.

The answer to question (2) is not so simple. The accuracy of the full-system

scheme of equation (9.7) certainly improves with increasing system dimension

because the accuracy of the spatial finite-difference terms comprising R increases

with decreasing node spacing. However, in the case of the factored scheme, this

effect is countered by the behavior of the factorization error term (tc,_rx2jl+c_} 1J2.
The actual magnitude of the coefficients in J1 and J2 (at least those derived from

spatial differences) are between O(Ay -1) and O(Ay-_), where Ay is the node

138

spacing.Thisis becauseof the Ay and Ay z factors that occur in the denom-

inators of finite-difference expressions for first- and second-partial derivatives.

Therefore, the factorization error term may grow quite fast with decreasing Ay.

A detailed theoretical analysis of this problem would be quite complicated.
Testing on PC-sized problems indicated that the full-system scheme was

somewhat faster than the factored-scheme for a given level of accuracy. The

obvious question is: What is the break-even point for the two methods? That

is, for what size problem does the increased solution speed of the factored scheme

make up for its reduced accuracy? I have no hard answers to this question. In

light of the growing error terms of the factored method, it is entirely possible

that the break-even point never occurs -- the full-system solution might always
be better.

Before turning to other matters, one computational point is worth discussing:

How does one actually calculate the Jacobian J required in equation (9.7)?
The problem is that the staggered-grid structure and exceptions at boundaries

make the ordering of the components of V and calculation of R terms quite

complicated. Rather than attempting to algebraically compute J, with the

high likelihood of human error, I chose to let Manifest do the work. By virtue

of structured programming techniques and numerical differencing, Manifest is

able to calculate reliable estimates of J components in the form

Jkl = Rk(V + h6t) - Rk(V)
h (9.9)

where 61 is the Kronecker delta vector (zero except one for /-th component).

The program includes time-saving logic to avoid differencing in the ease where

Rk has no dependence on _ and to store intermediate values that may be

needed for subsequent components of J. Also, when calculating a R_ term,

Manifest automatically replaces any reference to a dependent variable D_ by

the appropriate function Fk(V, r) according to (9.1). In this way Rk is always,

ultimately, a function of V and r. This feature makes it especially straight-
forward to code the finite-difference formulae in the Rk terms.

One disadvantage of the Manifest code is that, while efficient on a scalar

processor, it seems to be beyond the means of the current generation of compilers

to vectorize. The result is that Manifest cannot, at present, take full advantage
of vector processors such as the Cray-series of computers.

9.4 Dependent Variables

Most of the dependent variables Dk are present because of the MAC staggered-

grid scheme used by Manifest. The ideas behind and advantages of the MAC
scheme are discussed in section 8.5.1. See especially figures 8.3 and 8.4. This
section expounds on some of the computational details.

Essentially, the computational grid is subdivided into unit cells each of which

is two nodes on a side. Variables M, E and T, (density, pressure and solid

139

Grid Indices i, j M, E and T, 61 62

i even, j even

i even, j odd

i odd, j even

i odd, j odd

solved

y2-interpolation

Yl-interpolation
cross-interpolation

yl-interpolation

cross-interpolation
solved

y2-interpolation

y_-interpolation
solved

cross-interpolation

yl-interpolation

Table 9.1: Interpolation scheme at various positions of the computational grid.

temperature) are solved in the centers of the unit cells and the curvilinear com-
ponents of mass flow rate per unit area G 1 and G 2 are solved at the midpoints

of the appropriate sides. The MAC scheme has much in common with a control

volume formulation where the unit cell plays the role of the control volume.

Non-solved values of E, M, and G are interpolated or extrapolated. In
principle, the interpolation formulae are arbitrary, however, the choice affects

the accuracy of the solution and the bandwidth of the Jacobian matrix J.

Manifest uses first-order central and one-sided interpolation formulae. Three

general-purpose interpolating routines cover all possible cases: yl-direction in-
terpolation, y2-direction interpolation and cross-interpolation. The first case,

yl-interpolation is defined as follows for a variable S[i,j] representing E, M, G 1
or G 2 at grid index [i, j]

3s[_+ljl-Sl;+3,il if i = 1
s[i+ldl_-s[i-ljl if 1 < i < N1 (9.10)

S[i,j] = 3s[i-l,j_-sii-a,j] if i = N1
2

The case of y2-interpolation is exactly analogous, except in the other direc-

tion. Cross-interpolation is defined as the function-composition of the two --

yl-interpolation of y2-interpolated values or vice-versa. In most cases, cross-

interpolation amounts to calculating the value at the center of a box as the

average of the four corner values.

Table 9.1 presents the essentials of the Manifest interpolation scheme. An

entry of solved in the table indicated that the corresponding variable is an
independent solution variable -- a component of array V. Node indices i,j
are both even at the centers of unit cells, both odd at the corners and mixed

odd/even at side mid-points.

9.5 Boundary Conditions

Exceptions to the staggered-grid conventions of table 9.1 occur on the bound-

aries of the computational grid because of the boundary conditions imposed

there. Generally, one arrives at these boundary conditions by reflecting upon
the physics of the problem instead of by precise mathematical deduction. In the
case of Manifest:

140

• MassfluxG is specified on the boundary; either as zero, in the case of

a no-slip impermeable wall, or as some prescribed (steady or sinusoidal)

value, in the case of an active inlet.

• Gas temperature T is specified on the boundary; either as solid tempera-

ture T0 in the case of an impermeable wall, some prescribed constant value

for incoming flow through an inlet or extrapolated from interior values for

outgoing flow through an inlet.

The G boundary condition and the initial gas mass content completely deter-

mine system gas mass for all time. The temperature boundary condition is

designed so that, (I) the outgoing enthalpy flux at the inlets has freedom to

differ from the incoming value and (2), heat flux can be modeled at imperme-

able walls. However, the temperature boundary condition is not directly imple-
mented in Manifest since T is not a primary gasdynamic variable. Instead, the

boundary condition is used to evaluate density M on the boundary from the low

Mach-number approximation to the dimensionless equation of state M = 7E/T

(ignoring kinetic energy terms), where E is evaluated on the boundary according
to the scheme of table 9.1.

There is a minor ambiguity in the above boundary condition definitions

for points at the end of one logically distinct segment of the boundary and the

beginning of another. Such points are found at the corners of the computational

domain and along the sides where an active inlet changes to an impermeable

wall, and so forth. Manifest resolves these ambiguities by the simple technique

of calculating boundary conditions for all points lying at the corners of unit cells

as the average of the values for the neighboring two boundary points on either

side, which always lie at unit-cell side midpoints. Viva the MAC scheme!

9.6 Initial Values

Specifying initial values for the solved system variables is easy in some cases
but difficult in others. Mass flux G is easy. Manifest just initializes G = 0

everywhere in the interior of the computational domain. Solid temperature T0

is also easy since it is, essentially, specified in the input data set. The only hard

ones are M and E. They are initialized so that the initial gas temperature T
equals Ts and so that the time-mean pressure, over one period in an oscillating

flow solution, will equal the prescribed input value.

Here's how. First integrate the dimensionless equation of state (see section

8.4) over the physical computational domain.

/_-dv- 7-1-i /May (9.11)

Now, f Mdv is the initial total dimensionless mass of the system and can be

141

written

where M is the time-average local value of density and s_/is the initial surplus

or deficit. Assuming P has negligible spatial variation it can be factored out of

the left side integral of (9.11) leaving, after a little algebra

p = _+ T - I f_ldv (9.13)
7 f Tdv

where P is the time-average pressure. Now P is specified as input, and one

can calculate f 1(/ldv from the sinusoidal inlet mass flux boundary conditions

and fTdv from the assumed temperature profile. So, P can be solved. All
that remains is to estimate the initial across-the-board value of E from the

approximation E = P/(7 - 1), and the local value for M from M = 7E/T.

142

Chapter 10

Grid Generation

Grid Generation is a separate field unto itself. Although the basic ideas are

straight-forward, in some software packages the details can get rather involved.

Manifest tries to keep things simple by generating a grid which is the simple
solution to Laplace's equation. No frills.

Generally speaking, one starts with an irregularly shaped physical domain

in Euclidian space (x-coordinates) and seeks to transform this into a rectangu-

lar computational domain in curvilinear y-coordinates. The term rectangular

simply refers to the fact that the Euclidian domain maps onto a set of points
{(Yl,Y2,Y3)Iak _< Yk _< bk, k = 1...3} where the interval endpoints a_ and b_

are fixed but otherwise arbitrary. The boundaries of the x-coordinate irregular

domain map onto the curvilinear-coordinate surfaces (Yk = ak or b_), hence the
origin of the term boundary-fitted coordinates.

The inverse transformation xk = x_(yl,y2, Y3) from y to x coordinates is

the one that really interests us. This is because it is the y-coordinates that are

suitable for use as independent variables in a computational grid. Remember

that, two-dimensional Manifest specifies its computational grid as a set of dis-

crete coordinates discrete coordinates (Yl,Y2)[i,j] = (iAy, jAy) where indices

[i, j] range between limits i = 1 ... N1 and j = 1... N2 and Ay is some fixed but

arbitrary spacing. If the points (xl, x2), corresponding to this computational

grid, are plotted in Euclidean space and connected with line segments, one sees
the stretched grid superimposed on the physical domain one normally associates

with curvilinear coordinates. Figure 2.3 of chapter 2 shows a good Example.
The process of actually solving for the coordinate transformation xk =

x_(yl,y2, Y3) is the subject of the remainder of this section. In general, one
need_ three things:

• A differential equation that the transformation satisfies in the interior of

the computational domain.

• Transformation values on the boundary.

143

• A solution algorithm.

10.1 The Governing Differential Equation

Arguably the simplest differential equation that gives pleasing results for grid

generation is Laplace's equation. Applied to the problem at hand, it is written

02xk 02zk 02x_

c9y1_ + _gy----_+ 0y-'--_-= 0 (10.1)

for k = 1 ... 3. For those of us who are not comfortable with Laplace's equation

as an abstraction, an analogy from the realm of physical experience may help
at this point. Consider thermal conduction in solids, which science tells us is

also governed by Laplace's equation -- at least after time-varying terms have
settled out. Applying our intuitive notions of thermal equilibrium, look at xk as

the temperature along the boundary of the y-coordinate computational domain.

Then, the equilibrium interior temperature is equivalent to xk.

Manifest uses (10.1) as the basis for its grid generation. Considerable em-

bellishments are possible, but for physical domains that are not too irregular
Manifest seems to get along just fine as is. One obvious modification might be

to include a source term on the right side of (10.1). This might be called an

attractor in the jargon of those practiced in the art, and serve to concentrate

the grid about regions of special interest. The only problem is: How does one
specify the region of interest? (Not a trivial problem.) One might even abandon

Laplace's equation entirely and replace it with a more complicated equation de-

signed to do one thing or another. Interested readers may turn to reference [17]

for a discussion of more state-of-the-art grid generation techniques.

One problem with Laplace's equation that should not go unmentioned is

its difficulty near concave corners of the physical domain. In some cases the

grid fails to properly stretch around the corner and winds up partly outside the

domain. Presently, this can be avoided by tinkering with the corner shape or

grid spacing, but would, perhaps, best be handled by adjustments at the level
of the governing differential equation.

10.2 Boundary Conditions

Boundary conditions for grid generation are created by simply specifying the

location of the boundary points of the discrete computational grid on the actual

boundary of the physical domain. In principle this is easy to do, but the details

have a great deal to do with how the final grid looks. For example, it is possible
to concentrate points along the boundary to improve the local resolution of the

grid, and so forth.

144

Manifest,however,doesnothingcomplicated.It generatesitsgridboundary
conditionsinacompletelynaturalwayasaresultofthewayit breaksthephys-
icaldomainintoachainofquadrilateralsub-regions.Eachquadrilateralcarries
withit thephysicalz-coordinates of its corners and the fineness of the desired
discretization in each direction. Manifest calculates the physical x-coordinates

of the required number of equally spaced points along the exterior quadrilateral

boundaries and assigns these as computational grid boundary conditions.

One useful feature of Manifest is that it can group the quadrilaterals com-

prising the total physical domain into distinct sub-domains for grid-generation

purposes. By solving each sub-domain separately, Manifest insures that any

common boundaries are undistorted in the computational grid. That is, if B is

a physical boundary common to two adjacent sub-domains, then 13 falls on a

Yl = constant coordinate line in tile computational grid. This feature is handy

if one wants to include a quadrilateral filled with porous material as part of a

larger domain yet preserve the physical locations of its boundaries.

10.3 Solution Algorithm

An observation, which may or may not be profound, is that grid generation has
much in common with the actual solution of the computational-fluid-dynamics

problem. Both start with a multi-dimensional array of variables to be solved.

In grid generation, the array elements hold physical coordinate values for the
curvilinear grid. In a fluid-dynamics problem, the array dements hold the vari-

ous gasdynamic variables of the solution. It is no surprise then that many of the

algorithms of Manifest work equally well for both purposes. Since, historically,

the fluid-dynamics part of Manifest was in place before the grid-generation part,

it was a relatively simple task to extend Manifest to grid generation.

ttere's how the grid generation algorithm works. Think of all the discrete

non-boundary points in the computational grid as ordered in some way, say
from 1 to M, and let X(m) denote the value of physical coordinate xk at the

m-th location for m = 1... M. The details of the ordering are not important,

nor does it matter whether the k in xk is 1, 2 or 3 -- each is considered as a

separate problem in turn. The components X(m) form an array; call it X. Now,
at each grid location m, we can write down a function F,n(X), defined as the

finite-difference equivalent of the left-hand side of governing differential equation

(10.1). F,,_(X) is defined in terms of X(m), nearby X values and, perhaps,

boundary conditions, if grid location rn is near the boundary. Collectively, all

the components Fro(X) may be designated F(X). From this point of view,
our problem is to solve for X that makes F = 0, for then, the finite difference

version of (10.1) will be satisfied everywhere.
Manifest uses the multi-dimensional version of Newton's iterative method to

solve F = 0. Starting from an initial guess X ° Manifest computes successive

145

X n by solving for AX n in the linear system of equations

J'AX n = -F(X '_) (10.2)

where AX n = X n+l X n and jn is the Jacobian matrix OF evaluated at X n.-
Iteration stops when IIFII gets smaller than some convergence tolerance.

Already armed with the heavy artillery necessary to execute the fluid dy-

namics computational algorithm, it was easy to implement this relatively simple

algorithm for solving Laplace's equation. Convergence is generally obtained in

only a few iterations.

146

Bibliography

[1] D. A. Anderson, J. C. Tannehill, R. H. Pletcher, Computational Fluid Me-

chanics and Heat Transfer, Hemisphere (1984).

[2] R.M. Beam and R.F. Warming, An Implicit Finite-difference Algorithm for
Hyperbolic Systems in Conservation-Law Form, Journal of Computational

Physics, 22, 87-110 (1976).

[3] R.M. Beam and R.F. Warming, An Implicit Factored Scheme for the Com-
pressible Navier-Stokes Equations, AIAA Journal, Vol. 16, No. 4, 393-402

(1978).

[4] J. Bear, Transport Phenomena in Porous Media -- Basic Equations, In:

Fundamentals of Transport Phenomena in Porous Media, Editors: J. Bear

and M.Y. Corapcioglu, Martinius Nijhoff, 5-61 (1984).

[5] A. I. Borisenko, I. E. Tarapov, Translated by R. A. Silverman, Vector and

Tensor Analysis With Applications, Prentice-Hall (1968).

[6] D. Gedeon, Computational Techniques for the Two-Dimensional Gasdy-

namic Equations in Stifling Engine Regenerators and Associated Manifolds,

20th IECEC, Society of Automitive Engineers, 3.354-3.359 (1985).

[7] D. Gedeon, A GIobally-Implicity Stifling cycle Simulation, 21st IECEC,

Vol. 1, American Chemical Society, 550-556 (1986).

[8] Heames T.J., Uherka D.J., Zabel J.C., Daley J.G., Stifling Engine Ther-

modynamic Analysis: A Users Guide to SEAMI, Argonne National Labo-
ratory, ANL-82-59 (1982).

[9] 1%.I. Issa, Numerical Methods for Two- and Three-Dimensional Recirculat-

ing Flows, in: Computational Methods for Turbulent, Transonic and Vis-

cous Flows, Editor: J.A. Essers, Hemisphere, 183-211 (1983).

[10] W.M. Kays and A.L. London, Compact Heat Ezchangers, 8rd Edition,

McGraw-Hill (1984).

147

[11]I.F.Macdonald,M.S.EI-Sayed,K. MowandF.A.L. Dullien, Flow through

Porous Media - the Ergun Equation Revisited, Ind. Eng. Chem. Fundam.,

Vol. 18, No. 3, 199-208 (1979).

[12] H. E. Newell, Vector Analysis, McGraw-Hill (1955).

[13] R. Peyret, T. D. Taylor, Computational Methods for Fluid Flow, Springer-

Verlsg (1983).

[14] J.R. Seume and T.W. Simon, Oscillating Flow in Stirling Engine heat E_-

changers, 21st IECEC, Vol. 1, American Chemical Society, 533-538 (1986).

[15] H. Schlichting, Boundary-Layer Theory, Seventh Edition, McGraw-Hill

(1979).

[16] A.E. Taylor, Advanced Calculus, Ginn and Company (1955).

[17] J.F. Thompson, F.C. Thames, and C.W. Mastin, TOMCATM -- A Code
for Numerical Generation of Boundary-Fitted Curvilinear Coordinate Sys-

tems on Fields Containing Any Number of Arbitrary Two-Dimensional

Bodies, Journal of Computational Physics, Vol. 24,274-302 (1977).

[18] M. Van Dyke, An Album of Fluid Motion, The Parabolic Press (1982).

[19] M. Vinokur, Conservation Equations of Gasdynamics in Curvilinear Coor-

dinate Systems, Journal of Computational Physics, Vol. 14,105-125 (1974).

[20] H. Viviand, Conservative Forms of Gas Dynamic Equations, La Recherche

Aerospatiale, No. 1, 65-68 (1974).

148

Nomenclature

Vectors and tensors are set in bold face type. Their components in rectangular

or curvilinear coordinates are set in normal face with subscripts or superscripts

respectively. The summation convention for repeated indices applies.

Variables may be either dimensional or dimensionless depending on their

context. Generally, in the theory part of this report they are dimensional prior
to section 8.4 and dimensionless thcreafter.

Roman Letter Symbols

C1 _ C2

C v _ Cp

Cs

dh

D

C

ei

E

Eo
E z

/

gj
G

I

J

.I

M

n

P

Coefficients of Ergun friction factor f = el�Re + e2

Gas specific heats

Solid specific heat

Hydraulic diameter

Set of dependent computational variables

e + 1/2V. V, void-average gas mass specific total energy

Rectangular coordinate basis vectors i = 1 ... 3

pe, void-average gas energy density

(1 -j3)p,c, Tj, solid volume-specific energy

Euclidean three-dimensional space

Darcy friction factor

Curvilinear coordinate basis vectors j = 1 ... 3

flpV, mass flux per unit total area; continuous at porosity discontinuities

Identity matrix

Jacobian of the coordinate transformation matrix det(Yx)

Finite-difference system matrix onb'-#-

Void-average gas density

Outward-pointing unit surface normal

Void-average pressure

149

q -._VT, heat flux vector field

q, -_:,VT effective heat flux vector field

Q Gas-to-solid heat flux per unit void volume

R Array of finite-difference approximations (without time partials) to the

gasdynamic equations at each point in V

Re Reynolds number

t Time

T Void-average gas temperature

T, Solid-average temperature

u Void-average gas velocity components

V Void-average gas velocity vector field

V Set of independent computational variables

x Rectangular coordinates

Xy Matrix of coordinate transformation partials o_._0v

y Curvilinear coordinates

Yx Matrix of coordinate transformation partials

Greek Letter Symbols

/_ Porosity

Void-average gas mass-specific internal energy (C,,T for an ideal gas)

7 Ratio of specific heats cp/ct,

_: Thermal conductivity

Ice Effective thermal conductivity for lumped gas and solid

,_ (1 - l?)p,c,/(j3pocp), solid-to-void heat capacity ratio

Molecular viscosity

#e Effective viscosity in porous materials

r Time in curvilinear coordinates
_r Viscous stress tensor

Te Effective viscous stress tensor in porous materials (based on/_e)

p Void-average gas density

p, Solid-average density

¢ _" - PI, total stress tensor

_b Empirical permeability tensor for porous materials

w Angular frequency

150

Script

B

C

3_
&
&,
&2
P

Letter Symbols

Physical domain boundary

Elemental volume for porous flow equation derivation

Surfaces of C oriented in coordinate directions i = 1... 3
Surface of l;

Part of $v on the faces of C

Part of $_ in the interior of C

Void volume within C

151

_U.S. GOVERNMENT PlUNTING OFFICE: _ - 648-M2_110310

National Aeronauticsand
SpaceAdministration

1, Report No.

NASA CR- 182290

4. Title and Subtitle

Report Documentation Page

I 2. Government Accession No.

Manifest: A Computer Program for 2-D Flow Modeling

in Stirling Machines

7, Author(s)

David Gedeon

9. Performing Organization Name and Address

Gedeon Associates

16922 South Canaan Road

Athens, Ohio 45701

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

3. Recipient's Catalog No.

5. Report Date

May 1989

6. Performing Organization Code

8. Performing Organization Report No.

None

10. Work Unit No.

586-01-11

t 1. Contract or Grant No.

NAS3-25195

13. Type of Report and Period Covered

Contractor Report
Final

14. Sponsoring Agency Code

15, Supplementary Notes

Project Manager, Roy C. Tew, Jr., Power Technology Division, NASA Lewis Research Center.

16. Abstract

This report is about a computer program named Manifest, after manifold and estimate which more or less
describe its intended purpose. That is, Manifest is a program one might want to use to model the fluid dynamics

in the manifolds commonly found between the heat exchangers and regenerators of stirling machines. But not just

in the manifolds--in the regenerators as well. And in all sorts of other places too, such as: in heaters or coolers,

or perhaps even in cylinder spaces. There are probably nonstirling uses for Manifest also. In broad strokes,
Manifest will:

• Model oscillating internal compressible laminar fluid flow in a wide range of two-dimensional regions--either

filled with porous materials or empty.

• Present a graphics-based user-friendly interface, allowing easy selection and modification of region shape and

boundary condition specification.

• Run on a personal computer, or optionally (in the case of its number-crunching module) on a supercomputer.

• Allow interactive examination of the solution output so the user can view vector plots of flow velocity, contour

plots of pressure and temperature at various locations and tabulate energy-related integrals of interest.

17. Key Words (Suggested by Author(s))

Stirling engine

Computer program
Two-dimensional model

19, Security Ctassif. (of this report)

Unclassified

NASA FORM 1626 OCT 8S

I Date for general release May 1991Subject Category 34

20. Security Classif. (of this page) I 21. No of pages 22. Price"

Unclassified l 157 A08

